# Primal Stream

It’s obvious when you think about: an even number can never be the sum of two consecutive integers. Conversely, an odd number (except 1) is always the sum of two consecutive integers: 3 = 1 + 2; 5 = 2 + 3; 7 = 3 + 4; 9 = 4 + 5; and so on. The sum of three consecutive integers can be either odd or even: 6 = 1 + 2 + 3; 9 = 2 + 3 + 4. The sum of four consecutive integers must always be even: 1 + 2 + 3 + 4 = 10; 2 + 3 + 4 + 5 = 14. And so on.

But notice that 9 is the sum of consecutive integers in two different ways: 9 = 4 + 5 = 2 + 3 + 4. Having spotted that, I decided to look for numbers that were the sums of consecutive integers in the most different ways. These are the first few:

3 = 1 + 2 (number of sums = 1)
9 = 2 + 3 + 4 = 4 + 5 (s = 2)
15 = 1 + 2 + 3 + 4 + 5 = 4 + 5 + 6 = 8 + 7 = (s = 3)
45 (s = 5)
105 (s = 7)
225 (s = 8)
315 (s = 11)
945 (s = 15)
1575 (s = 17)
2835 (s = 19)
3465 (s = 23)
10395 (s = 31)

It was interesting that the number of different consecutive-integer sums for n was most often a prime number. Next I looked for the sequence at the Online Encyclopedia of Integer Sequences and discovered something that I hadn’t suspected:

A053624 Highly composite odd numbers: where d(n) increases to a record.

1, 3, 9, 15, 45, 105, 225, 315, 945, 1575, 2835, 3465, 10395, 17325, 31185, 45045, 121275, 135135, 225225, 405405, 675675, 1576575, 2027025, 2297295, 3828825, 6891885, 11486475, 26801775, 34459425, 43648605, 72747675, 130945815 — A053624 at OEIS

The notes add that the sequence is “Also least number k such that the number of partitions of k into consecutive integers is a record. For example, 45 = 22+23 = 14+15+16 = 7+8+9+10+11 = 5+6+7+8+9+10 = 1+2+3+4+5+6+7+8+9, six such partitions, but all smaller terms have fewer such partitions (15 has four).” When you don’t count the number n itself as a partition of n, you get 3 partitions for 15, i.e. consecutive integers sum to 15 in 3 different ways, so s = 3. I looked at more values for s and found that the stream of primes continued to flow:

3 → s = 1
9 = 3^2 → s = 2 (prime)
15 = 3 * 5 → s = 3 (prime)
45 = 3^2 * 5 → s = 5 (prime)
105 = 3 * 5 * 7 → s = 7 (prime)
225 = 3^2 * 5^2 → s = 8 = 2^3
315 = 3^2 * 5 * 7 → s = 11 (prime)
945 = 3^3 * 5 * 7 → s = 15 = 3 * 5
1575 = 3^2 * 5^2 * 7 → s = 17 (prime)
2835 = 3^4 * 5 * 7 → s = 19 (prime)
3465 = 3^2 * 5 * 7 * 11 → s = 23 (prime)
10395 = 3^3 * 5 * 7 * 11 → s = 31 (prime)
17325 = 3^2 * 5^2 * 7 * 11 → s = 35 = 5 * 7
31185 = 3^4 * 5 * 7 * 11 → s = 39 = 3 * 13
45045 = 3^2 * 5 * 7 * 11 * 13 → s = 47 (prime)
121275 = 3^2 * 5^2 * 7^2 * 11 → s = 53 (prime)
135135 = 3^3 * 5 * 7 * 11 * 13 → s = 63 = 3^2 * 7
225225 = 3^2 * 5^2 * 7 * 11 * 13 → s = 71 (prime)
405405 = 3^4 * 5 * 7 * 11 * 13 → s = 79 (prime)
675675 = 3^3 * 5^2 * 7 * 11 * 13 → s = 95 = 5 * 19
1576575 = 3^2 * 5^2 * 7^2 * 11 * 13 → s = 107 (prime)
2027025 = 3^4 * 5^2 * 7 * 11 * 13 → s = 119 = 7 * 17
2297295 = 3^3 * 5 * 7 * 11 * 13 * 17 → s = 127 (prime)
3828825 = 3^2 * 5^2 * 7 * 11 * 13 * 17 → s = 143 = 11 * 13
6891885 = 3^4 * 5 * 7 * 11 * 13 * 17 → s = 159 = 3 * 53
11486475 = 3^3 * 5^2 * 7 * 11 * 13 * 17 → s = 191 (prime)
26801775 = 3^2 * 5^2 * 7^2 * 11 * 13 * 17 → s = 215 = 5 * 43
34459425 = 3^4 * 5^2 * 7 * 11 * 13 * 17 → s = 239 (prime)
43648605 = 3^3 * 5 * 7 * 11 * 13 * 17 * 19 → s = 255 = 3 * 5 * 17
72747675 = 3^2 * 5^2 * 7 * 11 * 13 * 17 * 19 → s = 287 = 7 * 41
130945815 = 3^4 * 5 * 7 * 11 * 13 * 17 * 19 → s = 319 = 11 * 29

I can’t spot any way of predicting when n will yield a primal s, but I like the way that a simple question took an unexpected turn. When a number sets a record for the number of different ways it can be the sum of consecutive integers, that number will also be a highly composite odd number.

# You Sixy Beast

666 is the Number of the Beast. But it’s much more than that. After all, it’s a number, so it has mathematical properties (everything has mathematical properties, but it’s a sine-qua-non of numbers). For example, 666 is a palindromic number, reading the same forwards and backwards. And it’s a repdigit, consisting of a single repeated digit. Now try answering this question: how many pebbles are there in this triangle?

••
•••
••••
•••••
••••••
•••••••
••••••••
•••••••••
••••••••••
•••••••••••
••••••••••••
•••••••••••••
••••••••••••••
•••••••••••••••
••••••••••••••••
•••••••••••••••••
••••••••••••••••••
•••••••••••••••••••
••••••••••••••••••••
•••••••••••••••••••••
••••••••••••••••••••••
•••••••••••••••••••••••
••••••••••••••••••••••••
•••••••••••••••••••••••••
••••••••••••••••••••••••••
•••••••••••••••••••••••••••
••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

Counting the pebbles one by one would take a long time, but there’s a short-cut. Each line of the triangle after the first is one pebble longer than the previous line. There are 36 lines and therefore 36 pebbles in the final line. So the full number of pebbles = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36. And there’s an easy formula for that sum: (36^2 + 36) / 2 = (1296 + 36) / 2 = 1332 / 2 = 666.

So 666 is the 36th triangular number:

1 = 1
1+2 = 3
1+2+3 = 6
1+2+3+4 = 10
1+2+3+4+5 = 15
1+2+3+4+5+6 = 21
1+2+3+4+5+6+7 = 28
1+2+3+4+5+6+7+8 = 36
1+2+3+4+5+6+7+8+9 = 45
1+2+3+4+5+6+7+8+9+10 = 55
[...]
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36 = 666

But what’s tri(666), the 666th triangular number? By the formula above, it equals (666^2 + 666) / 2 = (443556 + 666) / 2 = 444222 / 2 = 222111. But recall something else from above: tri(6) = 1+2+3+4+5+6 = 21. Is it a coincidence that tri(6) = 21 and tri(666) = 222111? No, it isn’t:

tri(6) = 21 = (6^2 + 6) / 2 = (36 + 6) / 2 = 42 / 2
tri(66) = 2211 = (66^2 + 66) / 2 = (4356 + 66) / 2 = 4422 / 2
tri(666) = 222111 = (666^2 + 666) / 2 = (443556 + 666) / 2 = 444222 / 2
tri(6666) = 22221111
tri(66666) = 2222211111
tri(666666) = 222222111111
tri(6666666) = 22222221111111
tri(66666666) = 2222222211111111
tri(666666666) = 222222222111111111
tri(6666666666) = 22222222221111111111
tri(66666666666) = 2222222222211111111111
tri(666666666666) = 222222222222111111111111
tri(6666666666666) = 22222222222221111111111111
tri(66666666666666) = 2222222222222211111111111111
tri(666666666666666) = 222222222222222111111111111111

So we’ve looked at tri(36) = 666 and tri(666) = 222111. Let’s go a step further: tri(222111) = 24666759216. So 666 appears again. And the sixiness carries on here:

tri(36) = 666
tri(3366) = 5666661
tri(333666) = 55666666611
tri(33336666) = 555666666666111
tri(3333366666) = 5555666666666661111
tri(333333666666) = 55555666666666666611111
tri(33333336666666) = 555555666666666666666111111
tri(3333333366666666) = 5555555666666666666666661111111
tri(333333333666666666) = 55555555666666666666666666611111111
tri(33333333336666666666) = 555555555666666666666666666666111111111
tri(3333333333366666666666) = 5555555555666666666666666666666661111111111
tri(333333333333666666666666) = 55555555555666666666666666666666666611111111111
tri(33333333333336666666666666) = 555555555555666666666666666666666666666111111111111
tri(3333333333333366666666666666) = 5555555555555666666666666666666666666666661111111111111
tri(333333333333333666666666666666) = 55555555555555666666666666666666666666666666611111111111111

# Agogic Arithmetic

This is one of my favorite integer sequences:

• 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431, ... — A000217 at OEIS

And it’s easy to work out the rule that generates the sequence. It’s the sequence of triangular numbers, of course, which you get by summing the integers:

1
1 + 2 = 3
3 + 3 = 6
6 + 4 = 10
10 + 5 = 15
15 + 6 = 21
21 + 7 = 28
28 + 8 = 36
36 + 9 = 45
[...]

I like this sequence too, but it isn’t a sequence of integers and it’s much harder to work out the rule that generates it:

• 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, 7381/2520, 83711/27720, 86021/27720, 1145993/360360, 1171733/360360...

But you could say that it’s the inverse of the triangular numbers, because you generate it like this:

1
1 + 1/2 = 3/2
3/2 + 1/3 = 11/6
11/6 + 1/4 = 25/12
25/12 + 1/5 = 137/60
137/60 + 1/6 = 49/20
49/20 + 1/7 = 363/140
363/140 + 1/8 = 761/280
761/280 + 1/9 = 7129/2520
[...]

It’s the harmonic series, which is defined at Wikipedia as “the infinite series formed by summing all positive unit fractions”. I can’t understand its subtleties or make any important discoveries about it, but I thought I could ask (and begin to answer) a question that perhaps no-one else in history had ever asked: When are the leading digits of the k-th harmonic number, hs(k), equal to the digits of k in base 10?

hs(1) = 1
hs(43) = 4.349...
hs(714) = 7.1487...
hs(715) = 7.1501...
hs(9763) = 9.76362...
hs(122968) = 12.296899...
hs(122969) = 12.296907...
hs(1478366) = 14.7836639...
hs(17239955) = 17.23995590...
hs(196746419) = 19.6746419...
hs(2209316467) = 22.0931646788...

Do those numbers have any true mathematical significance? I doubt it. But they were fun to find, even though I wasn’t the first person in history to ask about them:

• 1, 43, 714, 715, 9763, 122968, 122969, 1478366, 17239955, 196746419, 2209316467, 24499118645, 268950072605 — A337904 at OEIS, Numbers k such that the decimal expansion of the k-th harmonic number starts with the digits of k, in the same order.

# Root Pursuit

Roots are hard, powers are easy. For example, the square root of 2, or √2, is the mysterious and never-ending number that is equal to 2 when multiplied by itself:

• √2 = 1·414213562373095048801688724209698078569671875376948073...

It’s hard to calculate √2. But the powers of 2, or 2^p, are the straightforward numbers that you get by multiplying 2 repeatedly by itself. It’s easy to calculate 2^p:

• 2 = 2^1
• 4 = 2^2
• 8 = 2^3
• 16 = 2^4
• 32 = 2^5
• 64 = 2^6
• 128 = 2^7
• 256 = 2^8
• 512 = 2^9
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
[...]

But there is a way to find √2 by finding 2^p, as I discovered after I asked a simple question about 2^p and 3^p. What are the longest runs of matching digits at the beginning of each power?

131072 = 2^17
129140163 = 3^17
1255420347077336152767157884641... = 2^193
1214512980685298442335534165687... = 3^193
2175541218577478036232553294038... = 2^619
2177993962169082260270654106078... = 3^619
7524389324549354450012295667238... = 2^2016
7524012611682575322123383229826... = 3^2016

There’s no obvious pattern. Then I asked the same question about 2^p and 5^p. And an interesting pattern appeared:

32 = 2^5
3125 = 5^5
316912650057057350374175801344 = 2^98
3155443620884047221646914261131... = 5^98
3162535207926728411757739792483... = 2^1068
3162020133383977882730040274356... = 5^1068
3162266908803418110961625404267... = 2^127185
3162288411569894029343799063611... = 5^127185

The digits 31622 rang a bell. Isn’t that the start of √10? Yes, it is:

• √10 = 3·1622776601683793319988935444327185337195551393252168268575...

I wrote a fast machine-code program to find even longer runs of matching initial digits. Sure enough, the pattern continued:

• 316227... = 2^2728361
• 316227... = 5^2728361
• 3162277... = 2^15917834
• 3162277... = 5^15917834
• 31622776... = 2^73482154
• 31622776... = 5^73482154
• 3162277660... = 2^961700165
• 3162277660... = 5^961700165

But why are powers of 2 and 5 generating the digits of √10? If you’re good at math, that’s a trivial question about a trivial discovery. Here’s the answer: We use base ten and 10 = 2 * 5, 10^2 = 100 = 2^2 * 5^2 = 4 * 25, 10^3 = 1000 = 2^3 * 5^3 = 8 * 125, and so on. When the initial digits of 2^p and 5^p match, those matching digits must come from the digits of √10. Otherwise the product of 2^p * 5^p would be too large or too small. Here are the records for matching initial digits multiplied by themselves:

32 = 2^5
3125 = 5^5
• 3^2 = 9

316912650057057350374175801344 = 2^98
3155443620884047221646914261131... = 5^98
• 31^2 = 961

3162535207926728411757739792483... = 2^1068
3162020133383977882730040274356... = 5^1068
• 3162^2 = 9998244

3162266908803418110961625404267... = 2^127185
3162288411569894029343799063611... = 5^127185
• 31622^2 = 999950884

• 316227... = 2^2728361
• 316227... = 5^2728361
• 316227^2 = 99999515529

• 3162277... = 2^15917834
• 3162277... = 5^15917834
• 3162277^2 = 9999995824729

• 31622776... = 2^73482154
• 31622776... = 5^73482154
• 31622776^2 = 999999961946176

• 3162277660... = 2^961700165
• 3162277660... = 5^961700165
• 3162277660^2 = 9999999998935075600

The square of each matching run falls short of 10^p. And so when the digits of 2^p and 5^p stop matching, one power must fall below √10, as it were, and one must rise above:

3 162266908803418110961625404267... = 2^127185
3·162277660168379331998893544432... = √10
3 162288411569894029343799063611... = 5^127185

In this way, 2^p * 5^p = 10^p. And that’s why matching initial digits of 2^p and 5^p generate the digits of √10. The same thing, mutatis mutandis, happens in base 6 with 2^p and 3^p, because 6 = 2 * 3:

• 2.24103122055214532500432040411... = √6 (in base 6)

24 = 2^4
213 = 3^4
225522024 = 2^34 in base 6 = 2^22 in base 10
22225525003213 = 3^34 (3^22)
2241525132535231233233555114533... = 2^1303 (2^327)
2240133444421105112410441102423... = 3^1303 (3^327)
2241055222343212030022044325420... = 2^153251 (2^15007)
2241003215453455515322105001310... = 3^153251 (3^15007)
2241032233315203525544525150530... = 2^233204 (2^20164)
2241030204225410320250422435321... = 3^233204 (3^20164)
2241031334114245140003252435303... = 2^2110415 (2^102539)
2241031103430053425141014505442... = 3^2110415 (3^102539)

And in base 30, where 30 = 2 * 3 * 5, you can find the digits of √30 in three different ways, because 30 = 2 * 15 = 3 * 10 = 5 * 6:

• 5·E9F2LE6BBPBF0F52B7385PE6E5CLN... = √30 (in base 30)

55AA4 = 2^M in base 30 = 2^22 in base 10
5NO6CQN69C3Q0E1Q7F = F^M = 15^22
5E63NMOAO4JPQD6996F3HPLIMLIRL6F... = 2^K6 (2^606)
5ECQDMIOCIAIR0DGJ4O4H8EN10AQ2GR... = F^K6 (15^606)
5E9DTE7BO41HIQDDO0NB1MFNEE4QJRF... = 2^B14 (2^9934)
5E9G5SL7KBNKFLKSG89J9J9NT17KHHO... = F^B14 (15^9934)
[...]
5R4C9 = 3^E in base 30 = 3^14 in base 10
52CE6A3L3A = A^E = 10^14
5E6SOQE5II5A8IRCH9HFBGO7835KL8A = 3^3N (3^113)
5EC1BLQHNJLTGD00SLBEDQ73AH465E3... = A^3N (10^113)
5E9FI455MQI4KOJM0HSBP3GG6OL9T8P... = 3^EJH (3^13187)
5E9EH8N8D9TR1AH48MT7OR3MHAGFNFQ... = A^EJH (10^13187)
[...]
5OCNCNRAP = 5^I in base 30 = 5^18 in base 10
54NO22GI76 = 6^I (6^18)
5EG4RAMD1IGGHQ8QS2QR0S0EH09DK16... = 5^1M7 (5^1567)
5E2PG4Q2G63DOBIJ54E4O035Q9TEJGH... = 6^1M7 (6^1567)
5E96DB9T6TBIM1FCCK8A8J7IDRCTM71... = 5^F9G (5^13786)
5E9NM222PN9Q9TEFTJ94261NRBB8FCH... = 6^F9G (6^13786)
[...]

So that’s √10, √6 and √30. But I said at the beginning that you can find √2 by finding 2^p. How do you do that? By offsetting the powers, as it were. With 2^p and 5^p, you can find the digits of √10. With 2^(p+1) and 5^p, you can find the digits of √2 and √20, because 2^(p+1) * 5^p = 2 * 2^p * 5^p = 2 * 10^p:

•  √2 = 1·414213562373095048801688724209698078569671875376948073...
• √20 = 4·472135954999579392818347337462552470881236719223051448...

16 = 2^4
125 = 5^3
140737488355328 = 2^47
142108547152020037174224853515625 = 5^46
1413... = 2^243
1414... = 5^242
14141... = 2^6651
14142... = 5^6650
141421... = 2^35389
141420... = 5^35388
4472136... = 2^162574
4472135... = 5^162573
141421359... = 2^3216082
141421352... = 5^3216081
447213595... = 2^172530387
447213595... = 5^172530386
[...]

# God Give Me Benf’

In “Wake the Snake”, I looked at the digits of powers of 2 and mentioned a fascinating mathematical phenomenon known as Benford’s law, which governs — in a not-yet-fully-explained way — the leading digits of a wide variety of natural and human statistics, from the lengths of rivers to the votes cast in elections. Benford’s law also governs a lot of mathematical data. It states, for example, that the first digit, d, of a power of 2 in base b (except b = 2, 4, 8, 16…) will occur with the frequency logb(1 + 1/d). In base 10, therefore, Benford’s law states that the digits 1..9 will occur with the following frequencies at the beginning of 2^p:

1: 30.102999%
2: 17.609125%
3: 12.493873%
4: 09.691001%
5: 07.918124%
6: 06.694678%
7: 05.799194%
8: 05.115252%
9: 04.575749%

Here’s a graph of the actual relative frequencies of 1..9 as the leading digit of 2^p (open images in a new window if they appear distorted):

And here’s a graph for the predicted frequencies of 1..9 as the leading digit of 2^p, as calculated by the log(1+1/d) of Benford’s law:

The two graphs agree very well. But Benford’s law applies to more than one leading digit. Here are actual and predicted graphs for the first two leading digits of 2^p, 10..99:

And actual and predicted graphs for the first three leading digits of 2^p, 100..999:

But you can represent the leading digit of 2^p in another way: using an adaptation of the famous Ulam spiral. Suppose powers of 2 are represented as a spiral of squares that begins like this, with 2^0 in the center, 2^1 to the right of center, 2^2 above 2^1, and so on:

←←←⮲
432↑
501↑
6789

If the digits of 2^p start with 1, fill the square in question; if the digits of 2^p don’t start with 1, leave the square empty. When you do this, you get this interesting pattern (the purple square at the very center represents 2^0):

Ulam-like power-spiral for 2^p where 1 is the leading digit

Here’s a higher-resolution power-spiral for 1 as the leading digit:

Power-spiral for 2^p, leading-digit = 1 (higher resolution)

And here, at higher resolution still, are power-spirals for all the possible leading digits of 2^p, 1..9 (some spirals look very similar, so you have to compare those ones carefully):

Power-spiral for 2^p, leading-digit = 1 (very high resolution)

Power-spiral for 2^p, leading-digit = 2

Power-spiral for 2^p, ld = 3

Power-spiral for 2^p, ld = 4

Power-spiral for 2^p, ld = 5

Power-spiral for 2^p, ld = 6

Power-spiral for 2^p, ld = 7

Power-spiral for 2^p, ld = 8

Power-spiral for 2^p, ld = 9

Power-spiral for 2^p, ld = 1..9 (animated)

Now try the power-spiral of 2^p, ld = 1, in some other bases:

Power-spiral for 2^p, leading-digit = 1, base = 9

Power-spiral for 2^p, ld = 1, b = 15

You can also try power-spirals for other n^p. Here’s 3^p:

Power-spiral for 3^p, ld = 1, b = 10

Power-spiral for 3^p, ld = 2, b = 10

Power-spiral for 3^p, ld = 1, b = 4

Power-spiral for 3^p, ld = 1, b = 7

Power-spiral for 3^p, ld = 1, b = 18

Elsewhere Other-Accessible…

Wake the Snake — an earlier look at the digits of 2^p

# Wake the Snake

In my story “Kopfwurmkundalini”, I imagined the square root of 2 as an infinitely long worm or snake whose endlessly varying digit-segments contained all stories ever (and never) written:

• √2 = 1·414213562373095048801688724209698078569671875376948073…

But there’s another way to get all stories ever written from the number 2. You don’t look at the root(s) of 2, but at the powers of 2:

• 2 = 2^1 = 2
• 4 = 2^2 = 2*2
• 8 = 2^3 = 2*2*2
• 16 = 2^4 = 2*2*2*2
• 32 = 2^5 = 2*2*2*2*2
• 64 = 2^6 = 2*2*2*2*2*2
• 128 = 2^7 = 2*2*2*2*2*2*2
• 256 = 2^8 = 2*2*2*2*2*2*2*2
• 512 = 2^9 = 2*2*2*2*2*2*2*2*2
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
• 2097152 = 2^21
• 4194304 = 2^22
• 8388608 = 2^23
• 16777216 = 2^24
• 33554432 = 2^25
• 67108864 = 2^26
• 134217728 = 2^27
• 268435456 = 2^28
• 536870912 = 2^29
• 1073741824 = 2^30
[...]

The powers of 2 are like an ever-lengthening snake swimming across a pool. The snake has an endlessly mutating head and a rhythmically waving tail with a regular but ever-more complex wake. That is, the leading digits of 2^p don’t repeat but the trailing digits do. Look at the single final digit of 2^p, for example:

• 02 = 2^1
• 04 = 2^2
• 08 = 2^3
• 16 = 2^4
• 32 = 2^5
• 64 = 2^6
• 128 = 2^7
• 256 = 2^8
• 512 = 2^9
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
• 2097152 = 2^21
• 4194304 = 2^22
[...]

The final digit of 2^p falls into a loop: 2 → 4 → 8 → 6 → 2 → 4→ 8…

Now try the final two digits of 2^p:

02 = 2^1
04 = 2^2
08 = 2^3
16 = 2^4
32 = 2^5
64 = 2^6
• 128 = 2^7
• 256 = 2^8
• 512 = 2^9
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
• 2097152 = 2^21
• 4194304 = 2^22
• 8388608 = 2^23
• 16777216 = 2^24
• 33554432 = 2^25
• 67108864 = 2^26
• 134217728 = 2^27
• 268435456 = 2^28
• 536870912 = 2^29
• 1073741824 = 2^30
[...]

Now there’s a longer loop: 02 → 04 → 08 → 16 → 32 → 64 → 28 → 56 → 12 → 24 → 48 → 96 → 92 → 84 → 68 → 36 → 72 → 44 → 88 → 76 → 52 → 04 → 08 → 16 → 32 → 64 → 28… Any number of trailing digits, 1 or 2 or one trillion, falls into a loop. It just takes longer as the number of trailing digits increases.

That’s the tail of the snake. At the other end, the head of the snake, the digits don’t fall into a loop (because of the carries from the lower digits). So, while you can get only 2, 4, 8 and 6 as the final digits of 2^p, you can get any digit but 0 as the first digit of 2^p. Indeed, I conjecture (but can’t prove) that not only will all integers eventually appear as the leading digits of 2^p, but they will do so infinitely often. Think of a number and it will appear as the leading digits of 2^p. Let’s try the numbers 1, 12, 123, 1234, 12345…:

16 = 2^4
128 = 2^7
12379400392853802748... = 2^90
12340799625835686853... = 2^1545
12345257952011458590... = 2^34555
12345695478410965346... = 2^63293
12345673811591269861... = 2^4869721
12345678260232358911... = 2^5194868
12345678999199154389... = 2^62759188

But what about the numbers 9, 98, 987, 986, 98765… as leading digits of 2^p? They don’t appear as quickly:

9007199254740992 = 2^53
98079714615416886934... = 2^186
98726397006685494828... = 2^1548
98768356967522174395... = 2^21257
98765563827287722773... = 2^63296
98765426081858871289... = 2^5194871
98765430693066680199... = 2^11627034
98765432584491513519... = 2^260855656
98765432109571471006... = 2^1641098748

Why do fragments of 123456789 appear much sooner than fragments of 987654321? Well, even though all integers occur infinitely often as leading digits of 2^p, some integers occur more often than others, as it were. The leading digits of 2^p are actually governed by a fascinating mathematical phenomenon known as Benford’s law, which states, for example, that the single first digit, d, will occur with the frequency log10(1 + 1/d). Here are the actual frequencies of 1..9 for all powers of 2 up to 2^101000, compared with the estimate by Benford’s law:

1: 30% of leading digits ↔ 30.1% estimated
2: 17.55% ↔ 17.6%
3: 12.45% ↔ 12.49%
4: 09.65% ↔ 9.69%
5: 07.89% ↔ 7.92%
6: 06.67% ↔ 6.69%
7: 05.77% ↔ 5.79%
8: 05.09% ↔ 5.11%
9: 04.56% ↔ 4.57%

Because (inter alia) 1 appears as the first digit of 2^p far more often than 9 does, the fragments of 123456789 appear faster than the fragments of 987654321. Mutatis mutandis, the same applies in all other bases (apart from bases that are powers of 2, where there’s a single leading digit, 1, 2, 4, 8…, followed by 0s). But although a number like 123456789 occurs much frequently than 987654321 in 2^p expressed in base 10 (and higher), both integers occur infinitely often.

As do all other integers. And because stories can be expressed as numbers, all stories ever (and never) written appear in the powers of 2. Infinitely often. You’ll just have to trim the tail of the story-snake.

# Magiciprocal

A021023 Decimal expansion of 1/19.

0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8 [...] The magic square that uses the decimals of 1/19 is fully magic. — A021023 at the Online Encyclopedia of Integer Sequences

# Tri Num Sum

The Sum of ten consecutive Triangular Numbers:

Starting with T0 = 0, in base 10,

The sum of the first 10 triangular numbers from T0 to T9 = 165
The sum of the next 10 triangular numbers from T10 to T19 = 1165
The sum of the next 10 triangular numbers from T20 to T29 = 3165
The sum of the next 10 triangular numbers from T30 to T39 = 6165
The sum of the next 10 triangular numbers from T40 to T49 = 10165
The sum of the next 10 triangular numbers from T50 to T59 = 15165

and so on.

The same pattern is evident in other bases [when summing T0 to Tbase-1 and so on].

• As submitted by Julian Beauchamp, 9v19, to Shyam Sunder Gupta’s “Fascinating Triangular Numbers”.

# 1nf1nity

Here are the natural numbers or counting numbers:

• 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77... — A000027 at the Online Encyclopedia of Integer Sequences (OEIS)

Here are the prime numbers, or numbers divisible only by themselves and 1:

• 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271... — A000040 at the OEIS

Here are the palindromic prime numbers, or prime numbers that read the same both forwards and backwards:

• 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181... — A002385 at the OEIS

Finally, here are the repunit primes, or palindromic primes consisting only of 1s:

• 11, 1111111111111111111, 11111111111111111111111, 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111, 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111... — A004022 at the OEIS (see A004023 for numbers of 1s in each repunit prime)

It’s obvious that there are more counting numbers than primes, isn’t it? Well, no. There are in fact as many primes as counting numbers. And there may be as many palindromic primes as primes. And as many repunit primes as palindromic primes.

# The Viscount of Bi-Count

Today is 22/2/22 and, as I hoped on 2/2/22, I can say more about an interesting little palindromic-pattern problem. For each set of integers <= 1[0]1 in base 10, I looked at the count of palindromes exactly divisible by 1, 2, 3, 4, 5, 6, 7, 8 and 9. For example, 2, 4, 6 and 8 are the 4 palindromes divisible by 2 that are less than 11, so countdiv(2) = 4 for pal <= 11; 3, 6 and 9 are the 3 palindromes divisible by 3, so countdiv(3) = 3; and so on. Here are the counts — and some interesting patterns — for palindromes <= (powers-of-10 + 1) up to 1,000,000,000,001:

count for palindromes <= 101 (prime)

countdiv(1) = 19
countdiv(2) = 8
countdiv(3) = 6
countdiv(4) = 4
countdiv(5) = 2
countdiv(6) = 2
countdiv(7) = 2
countdiv(8) = 2
countdiv(9) = 2

count for palindromes <= 1001 = 7 * 11 * 13

countdiv(1) = 109
countdiv(2) = 48
countdiv(3) = 36
countdiv(4) = 24
countdiv(5) = 12
countdiv(6) = 15
countdiv(7) = 15
countdiv(8) = 12
countdiv(9) = 12

count for palindromes <= 10001 = 73 * 137

countdiv(1) = 199
countdiv(2) = 88
countdiv(3) = 66
countdiv(4) = 44
countdiv(5) = 22
countdiv(6) = 28
countdiv(7) = 32
countdiv(8) = 22
countdiv(9) = 22

count for palindromes <= 100001 = 11 * 9091

countdiv(1) = 1099
countdiv(2) = 488
countdiv(3) = 366
countdiv(4) = 244
countdiv(5) = 122
countdiv(6) = 161
countdiv(7) = 163
countdiv(8) = 122
countdiv(9) = 122

count for palindromes <= 1000001 = 101 * 9901

countdiv(1) = 1999
countdiv(2) = 888
countdiv(3) = 666
countdiv(4) = 444
countdiv(5) = 222
countdiv(6) = 294
countdiv(7) = 303
countdiv(8) = 222
countdiv(9) = 222

count for palindromes <= 10000001 = 11 * 909091

countdiv(1) = 10999
countdiv(2) = 4888
countdiv(3) = 3666
countdiv(4) = 2444
countdiv(5) = 1222
countdiv(6) = 1627
countdiv(7) = 1588
countdiv(8) = 1222
countdiv(9) = 1222

count for palindromes <= 100000001 = 17 * 5882353

countdiv(1) = 19999
countdiv(2) = 8888
countdiv(3) = 6666
countdiv(4) = 4444
countdiv(5) = 2222
countdiv(6) = 2960
countdiv(7) = 2878
countdiv(8) = 2222
countdiv(9) = 2222

count for palindromes <= 1000000001 = 7 * 11 * 13 * 19 * 52579

countdiv(1) = 109999
countdiv(2) = 48888
countdiv(3) = 36666
countdiv(4) = 24444
countdiv(5) = 12222
countdiv(6) = 16293
countdiv(7) = 15734
countdiv(8) = 12222
countdiv(9) = 12222

count for palindromes <= 10000000001 = 101 * 3541 * 27961

countdiv(1) = 199999
countdiv(2) = 88888
countdiv(3) = 66666
countdiv(4) = 44444
countdiv(5) = 22222
countdiv(6) = 29626
countdiv(7) = 28783
countdiv(8) = 22222
countdiv(9) = 22222

count for palindromes <= 100000000001 = 11^2 * 23 * 4093 * 8779

countdiv(1) = 1099999
countdiv(2) = 488888
countdiv(3) = 366666
countdiv(4) = 244444
countdiv(5) = 122222
countdiv(6) = 162959
countdiv(7) = 157361
countdiv(8) = 122222
countdiv(9) = 122222

count for palindromes <= 1000000000001 = 73 * 137 * 99990001

countdiv(1) = 1999999
countdiv(2) = 888888
countdiv(3) = 666666
countdiv(4) = 444444
countdiv(5) = 222222
countdiv(6) = 296292
countdiv(7) = 286461
countdiv(8) = 222222
countdiv(9) = 222222

As you can see, the counts for some numbers alternate between rep-digits (all digits the same) and nearly rep-digits. For example, the counts for palindromes exactly divisible by 5, 8 and 9 are alternately all 2s or 1 followed by all 2s. And you get counts of 2, 12, 22, 122, 222, 1222, 2222 in other even bases greater than base 2 when the counts are represented in that base. Here’s base 8:

count for palindromes <= 101 in b8 = 65 in b10 = 5 * 13

countdiv(1) = 17 in b8 (15 in b10)
countdiv(2) = 6
countdiv(3) = 11 in b8 (9)
countdiv(4) = 2
countdiv(5) = 3
countdiv(6) = 4
countdiv(7) = 2

count for palindromes <= 1001 in b8 = 513 in b10 = 3^3 * 19

countdiv(1) = 107 in b8 (71 in b10)
countdiv(2) = 36 in b8 (30)
countdiv(3) = 34 in b8 (28)
countdiv(4) = 12 in b8 (10)
countdiv(5) = 20 in b8 (16)
countdiv(6) = 14 in b8 (12)
countdiv(7) = 12 in b8 (10)

count for palindromes <= 10001 in b8 = 4097 in b10 = 17 * 241

countdiv(1) = 177 in b8 (127 in b10)
countdiv(2) = 66 in b8 (54)
countdiv(3) = 123 in b8 (83)
countdiv(4) = 22 in b8 (18)
countdiv(5) = 34 in b8 (28)
countdiv(6) = 44 in b8 (36)
countdiv(7) = 22 in b8 (18)

count for palindromes <= 100001 in b8 = 32769 in b10 = 3^2 * 11 * 331

countdiv(1) = 1077 in b8 (575 in b10)
countdiv(2) = 366 in b8 (246)
countdiv(3) = 352 in b8 (234)
countdiv(4) = 122 in b8 (82)
countdiv(5) = 164 in b8 (116)
countdiv(6) = 144 in b8 (100)
countdiv(7) = 122 in b8 (82)

count for palindromes <= 1000001 in b8 = 262145 in b10 = 5 * 13 * 37 * 109

countdiv(1) = 1777 in b8 (1023 in b10)
countdiv(2) = 666 in b8 (438)
countdiv(3) = 1251 in b8 (681)
countdiv(4) = 222 in b8 (146)
countdiv(5) = 316 in b8 (206)
countdiv(6) = 444 in b8 (292)
countdiv(7) = 222 in b8 (146)

count for palindromes <= 10000001 in b8 = 2097153 in b10 = 3^2 * 43 * 5419

countdiv(1) = 10777 in b8 (4607 in b10)
countdiv(2) = 3666 in b8 (1974)
countdiv(3) = 3524 in b8 (1876)
countdiv(4) = 1222 in b8 (658)
countdiv(5) = 1645 in b8 (933)
countdiv(6) = 1444 in b8 (804)
countdiv(7) = 1222 in b8 (658)

count for palindromes <= 100000001 in b8 = 16777217 in b10 = 97 * 257 * 673

countdiv(1) = 17777 in b8 (8191 in b10)
countdiv(2) = 6666 in b8 (3510)
countdiv(3) = 12523 in b8 (5459)
countdiv(4) = 2222 in b8 (1170)
countdiv(5) = 3164 in b8 (1652)
countdiv(6) = 4444 in b8 (2340)
countdiv(7) = 2222 in b8 (1170)

The counts for 4-palindromes and 7-palindromes in base 8 run: 1, 12, 22, 122, 222, 1222, 2222…, just like the counts for 5-palindromes, 8-palindromes and 9-palindromes in base 10. Here’s base 14:

count for palindromes <= 101 in b14 = 197 in b10 (prime)

countdiv(1) = 1D in b14 (27 in b10)
countdiv(2) = C in b14 (12)
countdiv(3) = 13 in b14 (17)
countdiv(4) = 6
countdiv(5) = 11 in b14 (15)
countdiv(6) = 8
countdiv(7) = 2
countdiv(8) = 2
countdiv(9) = 5
countdiv(A) = 7
countdiv(B) = 2
countdiv(C) = 4
countdiv(D) = 2

count for palindromes <= 1001 in b14 = 2745 in b10 = 3^2 * 5 * 61

countdiv(1) = 10D in b14 (209 in b10)
countdiv(2) = 6C in b14 (96)
countdiv(3) = 58 in b14 (78)
countdiv(4) = 36 in b14 (48)
countdiv(5) = 3A in b14 (52)
countdiv(6) = 28 in b14 (36)
countdiv(7) = 12 in b14 (16)
countdiv(8) = 19 in b14 (23)
countdiv(9) = 1C in b14 (26)
countdiv(A) = 19 in b14 (23)
countdiv(B) = 14 in b14 (18)
countdiv(C) = 14 in b14 (18)
countdiv(D) = 12 in b14 (16)

count for palindromes <= 10001 in b14 = 38417 in b10 = 41 * 937

countdiv(1) = 1DD in b14 (391 in b10)
countdiv(2) = CC in b14 (180)
countdiv(3) = 147 in b14 (259)
countdiv(4) = 66 in b14 (90)
countdiv(5) = 129 in b14 (233)
countdiv(6) = 88 in b14 (120)
countdiv(7) = 22 in b14 (30)
countdiv(8) = 31 in b14 (43)
countdiv(9) = 66 in b14 (90)
countdiv(A) = 79 in b14 (107)
countdiv(B) = 26 in b14 (34)
countdiv(C) = 44 in b14 (60)
countdiv(D) = 22 in b14 (30)

count for palindromes <= 100001 in b14 = 537825 in b10 = 3 * 5^2 * 71 * 101

countdiv(1) = 10DD in b14 (2939 in b10)
countdiv(2) = 6CC in b14 (1356)
countdiv(3) = 594 in b14 (1110)
countdiv(4) = 366 in b14 (678)
countdiv(5) = 3B2 in b14 (744)
countdiv(6) = 288 in b14 (512)
countdiv(7) = 122 in b14 (226)
countdiv(8) = 1A1 in b14 (337)
countdiv(9) = 1CA in b14 (374)
countdiv(A) = 1A7 in b14 (343)
countdiv(B) = 150 in b14 (266)
countdiv(C) = 144 in b14 (256)
countdiv(D) = 122 in b14 (226)

count for palindromes <= 1000001 in b14 = 7529537 in b10 = 37 * 197 * 1033

countdiv(1) = 1DDD in b14 (5487 in b10)
countdiv(2) = CCC in b14 (2532)
countdiv(3) = 1493 in b14 (3657)
countdiv(4) = 666 in b14 (1266)
countdiv(5) = 12B1 in b14 (3291)
countdiv(6) = 888 in b14 (1688)
countdiv(7) = 222 in b14 (422)
countdiv(8) = 331 in b14 (631)
countdiv(9) = 63A in b14 (1228)
countdiv(A) = 7A7 in b14 (1519)
countdiv(B) = 278 in b14 (498)
countdiv(C) = 444 in b14 (844)
countdiv(D) = 222 in b14 (422)

count for palindromes <= 10000001 in b14 = 105413505 in b10 = 3 * 5 * 7027567

countdiv(1) = 10DDD in b14 (41159 in b10)
countdiv(2) = 6CCC in b14 (18996)
countdiv(3) = 5948 in b14 (15548)
countdiv(4) = 3666 in b14 (9498)
countdiv(5) = 3B2A in b14 (10426)
countdiv(6) = 2888 in b14 (7176)
countdiv(7) = 1222 in b14 (3166)
countdiv(8) = 1A31 in b14 (4747)
countdiv(9) = 1C6D in b14 (5193)
countdiv(A) = 1A79 in b14 (4811)
countdiv(B) = 1513 in b14 (3741)
countdiv(C) = 1444 in b14 (3588)
countdiv(D) = 1222 in b14 (3166)

count for palindromes <= 100000001 in b14 = 1475789057 in b10 = 17 * 5393 * 16097

countdiv(1) = 1DDDD in b14 (76831 in b10)
countdiv(2) = CCCC in b14 (35460)
countdiv(3) = 14947 in b14 (51219)
countdiv(4) = 6666 in b14 (17730)
countdiv(5) = 12B29 in b14 (46097)
countdiv(6) = 8888 in b14 (23640)
countdiv(7) = 2222 in b14 (5910)
countdiv(8) = 3331 in b14 (8863)
countdiv(9) = 631D in b14 (17079)
countdiv(A) = 7A79 in b14 (21275)
countdiv(B) = 278B in b14 (6983)
countdiv(C) = 4444 in b14 (11820)
countdiv(D) = 2222 in b14 (5910)

Now 7-palindromes and D-palindromes (D = 13 in base 10) are following the [1]2222… pattern. What explains it? If you’re good at math, you won’t need telling. But I’m not good at maths, so I’m going to tell myself and other members of the not-good-at-math community what’s going on. Let’s go back to base 10 and the counts for 5-palindromes, that is, palindromes exactly divisible by 5. In base 10, the only integers exactly divisible by 5 have to end in either 5 or 0. But a palindrome can’t end in 0, because then the leading digit would have to be 0 too. Therefore only palindromes ending in 5 are exactly divisible by 5 in base 10. And if the palindromes end in 5, they have to start with 5 too.

Once we know that, we can easily calculate, for a given number of digits, how many 5-palindromes there are. Take 5-palindromes with three digits. If the three-digit 5-palindromes end and start with 5, we have to consider only the middle digit, which can obviously range from 0 to 9: 505, 515, 525, 535, 545, 555, 565, 575, 585 and 595. So there are 10 3-digit 5-palindromes. We add that count to the count for the single one-digit 5-palindrome, 5, and the single two-digit 5-palindrome, 55. So the cumulative count for 5-palindromes < 1001 is: 10 + 1 + 1 = 12.

Now look at four-digit 5-palindromes. They start and end with 5, therefore we have to consider only the middle two digits. And those middle digits have to be identical: 5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995. So there are also 10 four-digit 5-palindromes and count of 5-palindromes < 10001 is: 10 + 10 + 1 + 1 = 22.

Now look at five-digit 5-palindromes. Again we have consider only the middle digits, because the first and fifth digits have to be 5. The second digit of a five-digit 5-palindrome has to be the same as the fourth digit: 50005, 51715, 52425, 53135, and so on. And the second and fourth digits can obviously range from 0 to 9. And so can the third and middle digit of the 5-palindromes. But the third digit doesn’t have to be the same as the second and fourth digits: 50005, 50105, 50205, and so on. Therefore the number of five-digit 5-palindromes is 10 * 10 = 100. And the count of 5-palindromes < 100001 is: 100 + 10 + 10 + 1 + 1 = 122.

Now look at six-digit 5-palindromes. The second digit of a six-digit 5-palindrome has to be same as the fifth digit and the third digit has to be the same as the fourth digit. So once you have the second and third digits, you automatically have the fourth and fifth digits: 500005, 523325, 587785, and so on. Clearly, the second and third digits range from 00 to 99 (i.e., 00, 01, 02 … 97, 98, 99), so there must be 100 six-digit 6-palindromes. And the count of 5-palindromes < 1000001 is: 100 + 100 + 10 + 10 + 1 + 1 = 222.

It should be clear, then, that the count of 5-palindromes for an odd number of digits, d, will be always the same as the count of 5-palindromes for the even number of digits d+1. There is 1 one-digit 5-palindrome, namely 5, and 1 two-digit 5-palindrome, namely 55. There are 10 three-digit 5-palindromes, 505 to 595, and 10 four-digit 5-palindromes, 5005 to 5995. Now, the count of 5-palindromes with an odd number of digits, d, will be equal to 10^(d\2), where d\2 = (d-1)/2. And the count for 5-palindromes with the even number of digits d+1 will be the same, 10^(d\2). Therefore the count for both sets of 5-palindromes, d-digit palindromes and (d+1)-digit palindromes, will be 2 * 10^(d\2). And that’s why the cumulative count of 5-palindromes looks the way it does in base 10: 1, 2, 12, 22, 122, 222, 1222, 2222, 12222, 22222…

The same reasoning applies in other even bases greater than base 2. When a palindrome divisible by a particular number has to start and end with the same digit, s, in base b, the middle digits will dictate a count of b^(d\2) for both d-digit s-palindromes and (d+1)-digit s-palindromes. And you’ll get the same cumulative count for s-palindromes in that base: 1, 2, 12, 22, 122, 222, 1222, 2222, 12222, 22222…

Some other patterns in the palindrome-counts can be explained by extending the reasoning given above. For example, if an s-palindrome can begin and end with two possible numbers, you’ll get cumulative counts of 2, 4, 24, 44, 244, 444, 2444, 4444, 24444, 44444 and so on. If the s-palindrome can end with three possible numbers, you’ll get cumulative counts of 3, 6, 36, 66, 366, 666, 3666, 6666, 36666, 66666 and so on.

Post-Performative Post-Scriptum

The discussion above is of very simple mathematics, but that’s the only kind I can cope with. All the same, I’m pleased that I managed to work out why the count of 5-palindromes behaves like that in base 10. So I’ve decided to award myself a title. Remember that the count for 5-palindromes of length d and d+1 is 2 * 10^(d\2), where d is an odd number. And you could say that 2 * 10^(d\2) is a bi-count of 10^(d\2). So I’m calling myself the Viscount of Bi-Count.