“The persistence of a number is the number of times you need to multiply the digits together before reaching a single digit.” — OEIS
Base 5
23 → 11 → 1 in b5 (c=3) (n=13 in b10)
233 → 33 → 14 → 4 in b5 (c=4) (n=68 in b10)
33334 → 2244 → 224 → 31 → 3 in b5 (c=5) (n=2344 in b10)
444444444444 → 13243332331 → 333124 → 1331 → 14 → 4 in b5 (c=6) (n=244140624 in b10)
3344444444444444444444 → 2244112144242244414 → 13243332331 → 333124 → 1331 → 14 → 4 in b5 (c=7) (n=1811981201171874 in b10)
Base 6
23 → 10 → 0 in b6 (c=3) (n=15 in b10)
35 → 23 → 10 → 0 in b6 (c=4) (n=23 in b10)
444 → 144 → 24 → 12 → 2 in b6 (c=5) (n=172 in b10)
24445 → 2544 → 424 → 52 → 14 → 4 in b6 (c=6) (n=3629 in b10)
Base 7
24 → 11 → 1 in b7 (c=3) (n=18 in b10)
36 → 24 → 11 → 1 in b7 (c=4) (n=27 in b10)
245 → 55 → 34 → 15 → 5 in b7 (c=5) (n=131 in b10)
4445 → 635 → 156 → 42 → 11 → 1 in b7 (c=6) (n=1601 in b10)
44556 → 6666 → 3531 → 63 → 24 → 11 → 1 in b7 (c=7) (n=11262 in b10)
5555555 → 443525 → 6666 → 3531 → 63 → 24 → 11 → 1 in b7 (c=8) (n=686285 in b10)
444555555555555666 → 465556434443526 → 115443241155 → 256641 → 4125 → 55 → 34 → 15 → 5 in b7 (c=9) (n=1086400325525346 in b10)
Base 8
24 → 10 → 0 in b8 (c=3) (n=20 in b10)
37 → 25 → 12 → 2 in b8 (c=4) (n=31 in b10)
256 → 74 → 34 → 14 → 4 in b8 (c=5) (n=174 in b10)
2777 → 1256 → 74 → 34 → 14 → 4 in b8 (c=6) (n=1535 in b10)
333555577 → 3116773 → 5126 → 74 → 34 → 14 → 4 in b8 (c=7) (n=57596799 in b10)
Base 9
25 → 11 → 1 in b9 (c=3) (n=23 in b10)
38 → 26 → 13 → 3 in b9 (c=4) (n=35 in b10)
57 → 38 → 26 → 13 → 3 in b9 (c=5) (n=52 in b10)
477 → 237 → 46 → 26 → 13 → 3 in b9 (c=6) (n=394 in b10)
45788 → 13255 → 176 → 46 → 26 → 13 → 3 in b9 (c=7) (n=30536 in b10)
2577777 → 275484 → 13255 → 176 → 46 → 26 → 13 → 3 in b9 (c=8) (n=1409794 in b10)
Base 10
25 → 10 → 0 (c=3)
39 → 27 → 14 → 4 (c=4)
77 → 49 → 36 → 18 → 8 (c=5)
679 → 378 → 168 → 48 → 32 → 6 (c=6)
6788 → 2688 → 768 → 336 → 54 → 20 → 0 (c=7)
68889 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (c=8)
2677889 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (c=9)
26888999 → 4478976 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (c=10)
3778888999 → 438939648 → 4478976 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (c=11)
277777788888899 → 4996238671872 → 438939648 → 4478976 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (c=12)
Base 11
26 → 11 → 1 in b11 (c=3) (n=28 in b10)
3A → 28 → 15 → 5 in b11 (c=4) (n=43 in b10)
69 → 4A → 37 → 1A → A in b11 (c=5) (n=75 in b10)
269 → 99 → 74 → 26 → 11 → 1 in b11 (c=6) (n=317 in b10)
3579 → 78A → 46A → 1A9 → 82 → 15 → 5 in b11 (c=7) (n=4684 in b10)
26778 → 3597 → 78A → 46A → 1A9 → 82 → 15 → 5 in b11 (c=8) (n=38200 in b10)
47788A → 86277 → 3597 → 78A → 46A → 1A9 → 82 → 15 → 5 in b11 (c=9) (n=757074 in b10)
67899AAA → 143A9869 → 299596 → 2A954 → 2783 → 286 → 88 → 59 → 41 → 4 in b11 (c=10) (n=130757439 in b10)
77777889999 → 2AA174996A → 143A9869 → 299596 → 2A954 → 2783 → 286 → 88 → 59 → 41 → 4 in b11 (c=11) (n=199718348047 in b10)
Base 12
26 → 10 → 0 in b12 (c=3) (n=30 in b10)
3A → 26 → 10 → 0 in b12 (c=4) (n=46 in b10)
6B → 56 → 26 → 10 → 0 in b12 (c=5) (n=83 in b10)
777 → 247 → 48 → 28 → 14 → 4 in b12 (c=6) (n=1099 in b10)
AAB → 778 → 288 → A8 → 68 → 40 → 0 in b12 (c=7) (n=1571 in b10)
3577777799 → 3BA55B53 → 557916 → 5576 → 736 → A6 → 50 → 0 in b12 (c=8) (n=17902874277 in b10)
Base 13
27 → 11 → 1 in b13 (c=3) (n=33 in b10)
3B → 27 → 11 → 1 in b13 (c=4) (n=50 in b10)
5A → 3B → 27 → 11 → 1 in b13 (c=5) (n=75 in b10)
9A → 6C → 57 → 29 → 15 → 5 in b13 (c=6) (n=127 in b10)
27A → AA → 79 → 4B → 35 → 12 → 2 in b13 (c=7) (n=439 in b10)
8AC → 58B → 27B → BB → 94 → 2A → 17 → 7 in b13 (c=8) (n=1494 in b10)
35AB → 99C → 59A → 288 → 9B → 78 → 44 → 13 → 3 in b13 (c=9) (n=7577 in b10)
9BBB → 55B6 → 99C → 59A → 288 → 9B → 78 → 44 → 13 → 3 in b13 (c=10) (n=21786 in b10)
2999BBC → 591795 → 65B5 → 99C → 59A → 288 → 9B → 78 → 44 → 13 → 3 in b13 (c=11) (n=13274091 in b10)
28CCCCCC → 9B89B93 → 591795 → 65B5 → 99C → 59A → 288 → 9B → 78 → 44 → 13 → 3 in b13 (c=12) (n=168938314 in b10)
377AAAABCCC → 2833B38BCB → B588A8A → 777995 → 4B2CA → 4A64 → 58B → 27B → BB → 94 → 2A → 17 → 7 in b13 (c=13) (n=494196864368 in b10)
Base 14
27 → 10 → 0 in b14 (c=3) (n=35 in b10)
3C → 28 → 12 → 2 in b14 (c=4) (n=54 in b10)
5B → 3D → 2B → 18 → 8 in b14 (c=5) (n=81 in b10)
99 → 5B → 3D → 2B → 18 → 8 in b14 (c=6) (n=135 in b10)
359 → 99 → 5B → 3D → 2B → 18 → 8 in b14 (c=7) (n=667 in b10)
CCC → 8B6 → 29A → CC → A4 → 2C → 1A → A in b14 (c=8) (n=2532 in b10)
359AB → 55AA → CA8 → 4C8 → 1D6 → 58 → 2C → 1A → A in b14 (c=9) (n=130883 in b10)
CDDDD → 8CC8C → 2C436 → 8B6 → 29A → CC → A4 → 2C → 1A → A in b14 (c=10) (n=499407 in b10)
3ABBDDDD → DAAAD54 → 63DAC8 → 5BC1A → 2596 → 2A8 → B6 → 4A → 2C → 1A → A in b14 (c=11) (n=397912927 in b10)
488AABCCCDDD → 39A59889584 → A89DBD84 → 598D14C → 5BC1A → 2596 → 2A8 → B6 → 4A → 2C → 1A → A in b14 (c=12) (n=18693488093783 in b10)
Base 15
28 → 11 → 1 in b15 (c=3) (n=38 in b10)
3D → 29 → 13 → 3 in b15 (c=4) (n=58 in b10)
5E → 4A → 2A → 15 → 5 in b15 (c=5) (n=89 in b10)
28C → CC → 99 → 56 → 20 → 0 in b15 (c=6) (n=582 in b10)
8AE → 4EA → 275 → 4A → 2A → 15 → 5 in b15 (c=7) (n=1964 in b10)
5BBB → 1E8A → 4EA → 275 → 4A → 2A → 15 → 5 in b15 (c=8) (n=19526 in b10)
BBBCC → 3BBC9 → B939 → BD3 → 1D9 → 7C → 59 → 30 → 0 in b15 (c=9) (n=596667 in b10)
2999BDE → 3C9CE6 → 66B7C → 9CC9 → 36C9 → 899 → 2D3 → 53 → 10 → 0 in b15 (c=10) (n=30104309 in b10)
39BBCCCCCD → 41CBD6D4C → 23C96E6 → 66B7C → 9CC9 → 36C9 → 899 → 2D3 → 53 → 10 → 0 in b15 (c=11) (n=140410607143 in b10)
Base 16
28 → 10 → 0 in b16 (c=3) (n=40 in b10)
3E → 2A → 14 → 4 in b16 (c=4) (n=62 in b10)
5F → 4B → 2C → 18 → 8 in b16 (c=5) (n=95 in b10)
BB → 79 → 3F → 2D → 1A → A in b16 (c=6) (n=187 in b10)
2AB → DC → 9C → 6C → 48 → 20 → 0 in b16 (c=7) (n=683 in b10)
3DDE → 1BBA → 4BA → 1B8 → 58 → 28 → 10 → 0 in b16 (c=8) (n=15838 in b10)
379BDD → 55C77 → 396C → 798 → 1F8 → 78 → 38 → 18 → 8 in b16 (c=9) (n=3644381 in b10)
Base 17
29 → 11 → 1 in b17 (c=3) (n=43 in b10)
3F → 2B → 15 → 5 in b17 (c=4) (n=66 in b10)
5G → 4C → 2E → 1B → B in b17 (c=5) (n=101 in b10)
9F → 7G → 6A → 39 → 1A → A in b17 (c=6) (n=168 in b10)
CE → 9F → 7G → 6A → 39 → 1A → A in b17 (c=7) (n=218 in b10)
3DD → 1CE → 9F → 7G → 6A → 39 → 1A → A in b17 (c=8) (n=1101 in b10)
9CF → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=9) (n=2820 in b10)
2AFF → F9C → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=10) (n=12986 in b10)
55DDF → CF4G → 25EB → 55A → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=11) (n=446163 in b10)
39DDGG → DGCG7 → 35F54 → F9C → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=12) (n=5079174 in b10)
DEGGGG → 86DCDC → DGCG7 → 35F54 → F9C → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=13) (n=19710955 in b10)
6BBBBBEEF → 6FBEB7G8 → 5B39ACE → 1CED8G → 35F54 → F9C → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=14) (n=46650378808 in b10)
2BDDDDDEEEEEF → 1FBBBB76B714 → 6FBEB7G8 → 5B39ACE → 1CED8G → 35F54 → F9C → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=15) (n=1570081251102035 in b10)
Base 18
29 → 10 → 0 in b18 (c=3) (n=45 in b10)
3F → 29 → 10 → 0 in b18 (c=4) (n=69 in b10)
5E → 3G → 2C → 16 → 6 in b18 (c=5) (n=104 in b10)
8D → 5E → 3G → 2C → 16 → 6 in b18 (c=6) (n=157 in b10)
2BB → D8 → 5E → 3G → 2C → 16 → 6 in b18 (c=7) (n=857 in b10)
2CEG → GAC → 5GC → 2H6 → B6 → 3C → 20 → 0 in b18 (c=8) (n=15820 in b10)
AABF → 2EGC → GAC → 5GC → 2H6 → B6 → 3C → 20 → 0 in b18 (c=9) (n=61773 in b10)
8GGHH → 5B8DE → DD2G → GC8 → 4D6 → H6 → 5C → 36 → 10 → 0 in b18 (c=10) (n=938627 in b10)
AAAAAAH → 8HGH28 → 5B8DE → DD2G → GC8 → 4D6 → H6 → 5C → 36 → 10 → 0 in b18 (c=11) (n=360129437 in b10)
Base 19
2A → 11 → 1 in b19 (c=3) (n=48 in b10)
3G → 2A → 11 → 1 in b19 (c=4) (n=73 in b10)
5F → 3I → 2G → 1D → D in b19 (c=5) (n=110 in b10)
AB → 5F → 3I → 2G → 1D → D in b19 (c=6) (n=201 in b10)
DH → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=7) (n=264 in b10)
2BC → DH → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=8) (n=943 in b10)
7BG → 37G → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=9) (n=2752 in b10)
DII → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=10) (n=5053 in b10)
4AAH → IFH → CDB → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=11) (n=31253 in b10)
3BGII → 15HGF → 2I9D → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=12) (n=472548 in b10)
EEFHH → 69GBI → 15HGF → 2I9D → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=13) (n=1926275 in b10)
ADEFFH → 2F7HHE → 69GBI → 15HGF → 2I9D → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=14) (n=26556906 in b10)
4ADDDDEEF → 3E7919IH → 2HH7FE → 69GBI → 15HGF → 2I9D → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=15) (n=77518543969 in b10)
9999999BBFHHHI → 6B41DG4CB3BG → H27A5F3D → 2F7HHE → 69GBI → 15HGF → 2I9D → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=16) (n=399503342991325867 in b10)
Base 20
2A → 10 → 0 in b20 (c=3) (n=50 in b10)
3H → 2B → 12 → 2 in b20 (c=4) (n=77 in b10)
6D → 3I → 2E → 18 → 8 in b20 (c=5) (n=133 in b10)
7J → 6D → 3I → 2E → 18 → 8 in b20 (c=6) (n=159 in b10)
DI → BE → 7E → 4I → 3C → 1G → G in b20 (c=7) (n=278 in b10)
6DE → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=8) (n=2674 in b10)
CGG → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=9) (n=5136 in b10)
2BHI → GGC → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=10) (n=20758 in b10)
CDGG → 4JGG → 28CG → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=11) (n=101536 in b10)
2DEGJ → DGCG → 4JGG → 28CG → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=12) (n=429939 in b10)
77BBHJ → BJ7D7 → GCGD → 4JGG → 28CG → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=13) (n=23612759 in b10)
BBBCEEHHHHH → 8DCB4G21J4 → 21ED4J4 → DGCG → 4JGG → 28CG → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=14) (n=118569903663157 in b10)
Base 21
2B → 11 → 1 in b21 (c=3) (n=53 in b10)
3I → 2C → 13 → 3 in b21 (c=4) (n=81 in b10)
6H → 4I → 39 → 16 → 6 in b21 (c=5) (n=143 in b10)
AK → 9B → 4F → 2I → 1F → F in b21 (c=6) (n=230 in b10)
GH → CK → B9 → 4F → 2I → 1F → F in b21 (c=7) (n=353 in b10)
4GI → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=8) (n=2118 in b10)
GII → BFI → 6F9 → 1HC → 9F → 69 → 2C → 13 → 3 in b21 (c=9) (n=7452 in b10)
5FHJ → 2CJC → C8C → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=10) (n=53296 in b10)
2BGIJ → CKKC → 64CI → BFI → 6F9 → 1HC → 9F → 69 → 2C → 13 → 3 in b21 (c=11) (n=498286 in b10)
FHKKK → AA5HI → GAJF → 4J89 → C8C → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=12) (n=3083912 in b10)
3BDGHJK → AHKKA3 → AA5HI → GAJF → 4J89 → C8C → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=13) (n=304907819 in b10)
6BBHIJJJJ → G1BHJ4DF → AHKKA3 → AA5HI → GAJF → 4J89 → C8C → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=14) (n=247765672579 in b10)
3DDGGGGGGGIIJ → 284GJDKAD63I → 5D65FHGK3 → 5BIB3KC → 1J6DC9 → H5JF → 2CJC → C8C → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=15) (n=26851272398708896 in b10)