# We Can Circ It Out

It’s a pretty little problem to convert this triangular fractal…

Sierpiński triangle (Wikipedia)

…into its circular equivalent:

Sierpiński triangle as circle

Sierpiński triangle to circle (animated)

But once you’ve circ’d it out, as it were, you can easily adapt the technique to fractals based on other polygons:

T-square fractal (Wikipedia)

T-square fractal as circle

T-square fractal to circle (animated)

Elsewhere other-accessible…

Dilating the Delta — more on converting polygonic fractals to circles…

# Six Mix Trix

Here’s an equilateral triangle divided into six smaller triangles:

Equilateral triangle divided into six irregular triangles (Stage #1)

Now keep on dividing:

Stage #2

Stage #3

Stage #4

Stage #5

Equilateral triangle dividing into six irregular triangles (animated)

But what happens if you divide the triangle, then discard some of the sub-triangles, then repeat? You get a self-similar shape called a fractal:

Stage #2

Stage #3

Stage #4

Stage #5

Stage #6

Triangle fractal (animated)

Here’s another example:

Stage #2

Stage #3

Stage #4

Stage #5

Stage #6

Stage #7

Triangle fractal (animated)

You can also delay the divide-and-discard to create a more symmetrical fractal, like this:

Stage #2

Stage #3

Stage #4

Stage #5

Stage #6

Stage #7

Triangle fractal (animated)

What next? You can use trigonometry to turn the cramped triangle into a circle:

Triangular fractal

Circular fractal
(Open in new window for full image)

Triangle-to-circle (animated)

Here’s another example:

Triangular fractal

Circular fractal

Triangle-to-circle (animated)

And below are some more circular fractals converted from triangular fractals. Some of them look like distorted skulls or transdimensional Lovecraftian monsters:

(Open in new window for full image)

Previous Pre-Posted

Circus Trix — an earlier look at sextally-divided-equilateral-triangle fractals