First Whirled Warp

Imagine two points moving clockwise around the circumference of a circle. Find the midpoint between the two points when one point is moving twice as fast as the other. The midpoint will trace this shape:

Midpoint of two points moving around circle at speeds s and s*2

(n.b. to make things easier to see, the red circle shown here and elsewhere is slightly larger than the virtual circle used to calculate the midpoints)


Now suppose that one point is moving anticlockwise. The midpoint will now trace this shape:

Midpoint for s, -s*2


Now try three points, two moving at the same speed and one moving twice as fast:

Midpoint for s, s, s*2


When the point moving twice as fast is moving anticlockwise, this shape appears:

Midpoint for s, s, -s*2


Here are more of these midpoint-shapes:

Midpoint for s, s*3


Midpoint for s, -s*3


Midpoint for s*2, s*3


Midpoint for s, -s, s*2


Midpoint for s, s*2, -s*2


Midpoint for s, s*2, s*2


Midpoint for s, -s*3, -s*5


Midpoint for s, s*2, s*3


Midpoint for s, s*2, -s*3


Midpoint for s, -s*3, s*5


Midpoint for s, s*3, s*5


Midpoint for s, s, s, s*3


Midpoint for s, s, s, -s*3


Midpoint for s, s, -s, s*3


Midpoint for s, s, -s, -s*3


But what about points moving around the perimeter of a polygon? Here are the midpoints of two points moving clockwise around the perimeter of a square, with one point moving twice as fast as the other:

Midpoint for square with s, s*2


And when one point moves anticlockwise:

Midpoint for square with s, -s*2


If you adjust the midpoints so that the square fills a circle, they look like this:

Midpoint for square with s, s*2, with square adjusted to fill circle


When the red circle is removed, the midpoint-shape is easier to see:

Midpoint for square with s, s*2, circ-adjusted


Here are more midpoint-shapes from squares:

Midpoint for s, s*3


Midpoint for s, -s*3


Midpoint for s, s*4


And some more circularly adjusted midpoint-shapes from squares:

Midpoint for s, s*3, circ-adjusted


Midpoint for s*2, s*3, circ-adjusted


Midpoint for s, s*5, circ-adjusted


Midpoint for s, s*6, circ-adjusted


Midpoint for s, s*7, circ-adjusted


Finally (for now), let’s look at triangles. If three points are moving clockwise around the perimeter of a triangle, one moving four times as fast as the other two, the midpoint traces this shape:

Midpoint for triangle with s, s, s*4


Now try one of the points moving anticlockwise:

Midpoint for s, s, -s*4


Midpoint for s, -s, s*4


If you adjust the midpoints so that the triangular space fills a circle, they look like this:

Midpoint for s, s, s*4, with triangular space adjusted to fill circle


Midpoint for s, -s, s*4, circ-adjusted


Midpoint for s, s, -s*4, circ-adjusted


There are lots more (infinitely more!) midpoint-shapes to see, so watch this (circularly adjusted) space.


Previously pre-posted (please peruse)

We Can Circ It Out — more on converting polygons into circles

We Can Circ It Out

It’s a pretty little problem to convert this triangular fractal…

Sierpiński triangle (Wikipedia)


…into its circular equivalent:

Sierpiński triangle as circle


Sierpiński triangle to circle (animated)


But once you’ve circ’d it out, as it were, you can easily adapt the technique to fractals based on other polygons:

T-square fractal (Wikipedia)

T-square fractal as circle


T-square fractal to circle (animated)


Elsewhere other-accessible…

Dilating the Delta — more on converting polygonic fractals to circles…

Bent Pent

This is a beautiful and interesting shape, reminiscent of a piece of jewellery:

Pentagons in a ring


I came across it in this tricky little word-puzzle:

Word puzzle using pentagon-ring


Here’s a printable version of the puzzle:

Printable puzzle


Let’s try placing some other regular polygons with s sides around regular polygons with s*2 sides:

Hexagonal ring of triangles


Octagonal ring of squares


Decagonal ring of pentagons


Dodecagonal ring of hexagons


Only regular pentagons fit perfectly, edge-to-edge, around a regular decagon. But all these polygonal-rings can be used to create interesting and beautiful fractals, as I hope to show in a future post.

Square Routes Re-Re-Re-Re-Re-Revisited

For a good example of how more can be less, try the chaos game. You trace a point jumping repeatedly 1/n of the way towards a randomly chosen vertex of a regular polygon. When the polygon is a triangle and 1/n = 1/2, this is what happens:

Chaos triangle #1


Chaos triangle #2


Chaos triangle #3


Chaos triangle #4


Chaos triangle #5


Chaos triangle #6


Chaos triangle #7


As you can see, this simple chaos game creates a fractal known as the Sierpiński triangle (or Sierpiński sieve). Now try more and discover that it’s less. When you play the chaos game with a square, this is what happens:

Chaos square #1


Chaos square #2


Chaos square #3


Chaos square #4


Chaos square #5


Chaos square #6


Chaos square #7


As you can see, more is less: the interior of the square simply fills with points and no attractive fractal appears. And because that was more is less, let’s see how less is more. What happens if you restrict the way in which the point inside the square can jump? Suppose it can’t jump twice towards the same vertex (i.e., the vertex v+0 is banned). This fractal appears:

Ban on choosing vertex [v+0]


And if the point can’t jump towards the vertex one place anti-clockwise of the currently chosen vertex, this fractal appears:

Ban on vertex [v+1] (or [v-1], depending on how you number the vertices)


And if the point can’t jump towards two places clockwise or anti-clockwise of the currently chosen vertex, this fractal appears:

Ban on vertex [v+2], i.e. the diagonally opposite vertex


At least, that is one possible route to those three particular fractals. You see another route, start with this simple fractal, where dividing and discarding parts of a square creates a Sierpiński triangle:

Square to Sierpiński triangle #1


Square to Sierpiński triangle #2


Square to Sierpiński triangle #3


Square to Sierpiński triangle #4


[…]


Square to Sierpiński triangle #10


Square to Sierpiński triangle (animated)


By taking four of these square-to-Sierpiński-triangle fractals and rotating them in the right way, you can re-create the three chaos-game fractals shown above. Here’s the [v+0]-ban fractal:

[v+0]-ban fractal #1


[v+0]-ban #2


[v+0]-ban #3


[v+0]-ban #4


[v+0]-ban #5


[v+0]-ban #6


[v+0]-ban #7


[v+0]-ban #8


[v+0]-ban #9


[v+0]-ban (animated)


And here’s the [v+1]-ban fractal:

[v+1]-ban fractal #1


[v+1]-ban #2


[v+1]-ban #3


[v+1]-ban #4


[v+1]-ban #5


[v+1]-ban #6


[v+1]-ban #7


[v+1]-ban #8


[v+1]-ban #9


[v+1]-ban (animated)


And here’s the [v+2]-ban fractal:

[v+2]-ban fractal #1


[v+2]-ban #2


[v+2]-ban #3


[v+2]-ban #4


[v+2]-ban #5


[v+2]-ban #6


[v+2]-ban #7


[v+2]-ban #8


[v+2]-ban #9


[v+2]-ban (animated)

And taking a different route means that you can find more fractals — as I will demonstrate.


Previously pre-posted (please peruse):

Square Routes
Square Routes Revisited
Square Routes Re-Revisited
Square Routes Re-Re-Revisited
Square Routes Re-Re-Re-Revisited
Square Routes Re-Re-Re-Re-Revisited

Dilating the Delta

A circle with a radius of one unit has an area of exactly π units = 3.141592… units. An equilateral triangle inscribed in the unit circle has an area of 1.2990381… units, or 41.34% of the area of the unit circle.

In other words, triangles are cramped! And so it’s often difficult to see what’s going on in a triangle. Here’s one example, a fractal that starts by finding the centre of the equilateral triangle:

Triangular fractal stage #1


Next, use that central point to create three more triangles:

Triangular fractal stage #2


And then use the centres of each new triangle to create three more triangles (for a total of nine triangles):

Triangular fractal stage #3


And so on, trebling the number of triangles at each stage:

Triangular fractal stage #4


Triangular fractal stage #5


As you can see, the triangles quickly become very crowded. So do the central points when you stop drawing the triangles:

Triangular fractal stage #6


Triangular fractal stage #7


Triangular fractal stage #8


Triangular fractal stage #9


Triangular fractal stage #10


Triangular fractal stage #11


Triangular fractal stage #12


Triangular fractal stage #13


Triangular fractal (animated)


The cramping inside a triangle is why I decided to dilate the delta like this:

Triangular fractal

Circular fractal from triangular fractal


Triangular fractal to circular fractal (animated)


Formation of the circular fractal (animated)


And how do you dilate the delta, or convert an equilateral triangle into a circle? You use elementary trigonometry to expand the perimeter of the triangle so that it lies on the perimeter of the unit circle. The vertices of the triangle don’t move, because they already lie on the perimeter of the circle, but every other point, p, on the perimeter of the triangles moves outward by a fixed amount, m, depending on the angle it makes with the center of the triangle.

Once you have m, you can move outward every point, p(1..i), that lies between p on the perimeter and the centre of the triangle. At least, that’s the theory between the dilation of the delta. In practice, all you need is a point, (x,y), inside the triangle. From that, you can find the angle, θ, and distance, d, from the centre, calculate m, and move (x,y) to d * m from the centre.

You can apply this technique to any fractal created in an equilateral triangle. For example, here’s the famous Sierpiński triangle in its standard form as a delta, then as a dilated delta or circle:

Sierpiński triangle

Sierpiński triangle to circular Sierpiński fractal


Sierpiński triangle to circle (animated)


But why stop at triangles? You can use the same elementary trigonometry to convert any regular polygon into a circle. A square inscribed in a unit circle has an area of 2 units, or 63.66% of the area of the unit circle, so it too is cramped by comparison with the circle. Here’s a square fractal that I’ve often posted before:

Square fractal, jump = 1/2, ban on jumping towards any vertex twice in a row


It’s created by banning a randomly jumping point from moving twice in a row 1/2 of the distance towards the same vertex of the square. When you dilate the fractal, it looks like this:

square_fractal_circ_i0

Circular fractal from square fractal, j = 1/2, ban on jumping towards vertex v(i) twice in a row


Circular fractal from square (animated)


And here’s a related fractal where the randomly jumping point can’t jump towards the vertex directly clockwise from the vertex it’s previously jumped towards (so it can jump towards the same vertex twice or more):

Square fractal, j = 1/2, ban on vertex v(i+1)


When the fractal is dilated, it looks like this:

Circular fractal from square, i = 1


Circular fractal from square (animated)


In this square fractal, the randomly jumping point can’t jump towards the vertex directly opposite the vertex it’s previously jumped towards:

Square fractal, ban on vertex v(i+2)


And here is the dilated version:

Circular fractal from square, i = 2

Circular fractal from square (animated)


And there are a lot more fractals where those came from. Infinitely many, in fact.

Get Your Prox Off #3

I’ve looked at lot at the fractals created when you randomly (or quasi-randomly) choose a vertex of a square, then jump half of the distance towards it. You can ban jumps towards the same vertex twice in a row, or jumps towards the vertex clockwise or anticlockwise from the vertex you’ve just chosen, and so on.

But you don’t have to choose vertices directly: you can also choose them by distance or proximity (see “Get Your Prox Off” for an earlier look at fractals-by-distance). For example, this fractal appears when you can jump half-way towards the nearest vertex, the second-nearest vertex, and the third-nearest vertex (i.e., you can’t jump towards the fourth-nearest or most distant vertex):

vertices = 4, distance = (1,2,3), jump = 1/2


It’s actually the same fractal as you get when you choose vertices directly and ban jumps towards the vertex diagonally opposite from the one you’ve just chosen. But this fractal-by-distance isn’t easy to match with a fractal-by-vertex:

v = 4, d = (1,2,4), j = 1/2


Nor is this one:

v = 4, d = (1,3,4)


This one, however, is the same as the fractal-by-vertex created by banning a jump towards the same vertex twice in a row:

v = 4, d = (2,3,4)


The point can jump towards second-nearest, third-nearest and fourth-nearest vertices, but not towards the nearest. And the nearest vertex will be the one chosen previously.

Now let’s try squares with an additional point-for-jumping-towards on each side (the points are numbered 1 to 8, with points 1, 3, 5, 7 being the true vertices):

v = 4 + s1 point on each side, d = (1,2,3)


v = 4 + s1, d = (1,2,5)


v = 4 + s1, d = (1,2,7)


v = 4 + s1, d = (1,3,8)


v = 4 + s1, d = (1,4,6)


v = 4 + s1, d = (1,7,8)


v = 4 + s1, d = (2,3,8)


v = 4 + s1, d = (2,4,8)


And here are squares where the jump is 2/3, not 1/2, and you can choose only the nearest or third-nearest jump-point:

v = 4, d = (1,3), j = 2/3


v = 4 + s1, d = (1,3), j = 2/3


Now here are some pentagonal fractals-by-distance:

v = 5, d = (1,2,5), j = 1/2


v = 5 + s1, d = (1,2,7)


v = 5 + s1, d = (1,2,8)


v = 5 + s1, d = (1,2,9)


v = 5 + s1, d = (1,9,10)


v = 5 + s1, d = (1,10), j = 2/3


v = 5 + s1, d = (various), j = 2/3 (animated)


And now some hexagonal fractals-by-distance:

v = 6, d = (1,2,4), j = 1/2


v = 6, d = (1,3,5)


v = 6, d = (1,3,6)


v = 6, d = (1,2,3,4)


v = 6 + central point, d = (1,2,3,4)


v = 6, d = (1,2,3,6)


v = 6, d = (1,2,4,6)


v = 6, d = (1,3,4,5)


v = 6, d = (1,3,4,6)


v = 6, d = (1,4,5,6)


Elsewhere other-accessible:

Get Your Prox Off — an earlier look at fractals-by-distance
Get Your Prox Off # 2 — and another

Fractal + Star = Fractar

Here’s a three-armed star made with three lines radiating at intervals of 120°:

Triangular fractal stage #1


At the end of each of the three lines, add three more lines at half the length:

Triangular fractal #2


And continue like this:

Triangular fractal #3


Triangular fractal #4


Triangular fractal #5


Triangular fractal #6


Triangular fractal #7


Triangular fractal #8


Triangular fractal #9


Triangular fractal #10


Triangular fractal (animated)


Because this fractal is created from a series of stars, you could call it a fractar. Here’s a black-and-white version:

Triangular fractar (black-and-white)


Triangular fractar (black-and-white) (animated)
(Open in a new window for larger version if the image seems distorted)


A four-armed star doesn’t yield an easily recognizable fractal in a similar way, so let’s try a five-armed star:

Pentagonal fractar stage #1


Pentagonal fractar #2


Pentagonal fractar #3


Pentagonal fractar #4


Pentagonal fractar #5


Pentagonal fractar #6


Pentagonal fractar #7


Pentagonal fractar (animated)


Pentagonal fractar (black-and-white)


Pentagonal fractar (bw) (animated)


And here’s a six-armed star:

Hexagonal fractar stage #1


Hexagonal fractar #2


Hexagonal fractar #3


Hexagonal fractar #4


Hexagonal fractar #5


Hexagonal fractar #6


Hexagonal fractar (animated)


Hexagonal fractar (black-and-white)


Hexagonal fractar (bw) (animated)


And here’s what happens to the triangular fractar when the new lines are rotated by 60°:

Triangular fractar (60° rotation) #1


Triangular fractar (60°) #2


Triangular fractar (60°) #3


Triangular fractar (60°) #4


Triangular fractar (60°) #5


Triangular fractar (60°) #6


Triangular fractar (60°) #7


Triangular fractar (60°) #8


Triangular fractar (60°) #9


Triangular fractar (60°) (animated)


Triangular fractar (60°) (black-and-white)


Triangular fractar (60°) (bw) (animated)


Triangular fractar (60°) (no lines) (black-and-white)


A four-armed star yields a recognizable fractal when the rotation is 45°:

Square fractar (45°) #1


Square fractar (45°) #2


Square fractar (45°) #3


Square fractar (45°) #4


Square fractar (45°) #5


Square fractar (45°) #6


Square fractar (45°) #7


Square fractar (45°) #8


Square fractar (45°) (animated)


Square fractar (45°) (black-and-white)


Square fractar (45°) (bw) (animated)


Without the lines, the final fractar looks like the plan of a castle:

Square fractar (45°) (bw) (no lines)


And here’s a five-armed star with new lines rotated at 36°:

Pentagonal fractar (36°) #1


Pentagonal fractar (36°) #2


Pentagonal fractar (36°) #3


Pentagonal fractar (36°) #4


Pentagonal fractar (36°) #5


Pentagonal fractar (36°) #6


Pentagonal fractar (36°) #7


Pentagonal fractar (36°) (animated)


Again, the final fractar without lines looks like the plan of a castle:

Pentagonal fractar (36°) (no lines) (black-and-white)


Finally, here’s a six-armed star with new lines rotated at 30°:

Hexagonal fractar (30°) #1


Hexagonal fractar (30°) #2


Hexagonal fractar (30°) #3


Hexagonal fractar (30°) #4


Hexagonal fractar (30°) #5


Hexagonal fractar (30°) #6


Hexagonal fractar (30°) (animated)


And the hexagonal castle plan:

Hexagonal fractar (30°) (black-and-white) (no lines)


Performativizing the Polygonic #3

Pre-previously in my passionate portrayal of polygonic performativity, I showed how a single point jumping randomly (or quasi-randomly) towards the vertices of a polygon can create elaborate fractals. For example, if the point jumps 1/φth (= 0.6180339887…) of the way towards the vertices of a pentagon, it creates this fractal:

Point jumping 1/φth of the way to a randomly (or quasi-randomly) chosen vertex of a pentagon


But as you might expect, there are different routes to the same fractal. Suppose you take a pentagon and select a single vertex. Now, measure the distance to each vertex, v(1,i=1..5), of the original pentagon (including the selected vertex) and reduce it by 1/φ to find the position of a new vertex, v(2,i=1..5). If you do this for each vertex of the original pentagon, then to each vertex of the new pentagons, and so on, in the end you create the same fractal as the jumping point does:

Shrink pentagons by 1/φ, stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Shrink by 1/φ (animated) (click for larger if blurred)


And here is the route to a centre-filled variant of the fractal:

Central pentagon, stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Central pentagon (animated) (click for larger if blurred)


Using this shrink-the-polygon method, you can reach the same fractals by a third route. This time, use vertex v(1,i) of the original polygon as the centre of the new polygon with its vertices v(2,i=1..5). Creation of the fractal looks like this:

Pentagons over vertices, shrink by 1/φ, stage #1 (no pentagons over vertices)


Stage #2


Stage #3


Stage #4


Stage #4


Stage #5


Stage #7


Pentagons over vertices (animated) (click for larger if blurred)


And here is a third way of creating the centre-filled pentagonal fractal:

Pentagons over vertices and central pentagon, stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Stage #7


Pentagons over vertices with central pentagon (animated) (click for larger if blurred)


And here is a fractal created when there are three pentagons to a side and the pentagons are shrunk by 1/φ^2 = 0.3819660112…:

Pentagon at vertex + pentagon at mid-point of side, shrink by 1/φ^2


Final stage


Pentagon at vertex + pentagon at mid-point of side (animated) (click for larger if blurred)


Pentagon at vertex + pentagon at mid-point of side + central pentagon, shrink by 1/φ^2 and c. 0.5, stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Pentagon at vertex + mid-point + center (animated) (click for larger if blurred)


Previously pre-posted:

Performativizing the Polygonic #2
Performativizing the Polygonic #1

Horn Again

Pre-previously on Overlord-in-terms-of-Core-Issues-around-Maximal-Engagement-with-Key-Notions-of-the-Über-Feral, I interrogated issues around this shape, the horned triangle:

unicorn_reptile_static

Horned Triangle (more details)


Now I want to look at the tricorn (from Latin tri-, “three”, + -corn, “horn”). It’s like a horned triangle, but has three horns instead of one:

Tricorn, or three-horned triangle


These are the stages that make up the tricorn:

Tricorn (stages)


Tricorn (animated)


And there’s no need to stop at triangles. Here is a four-horned square, or quadricorn:

Quadricorn


Quadricorn (animated)


Quadricorn (coloured)


And a five-horned pentagon, or quinticorn:

Quinticorn, or five-horned pentagon


Quinticorn (anim)


Quinticorn (col)


And below are some variants on the shapes above. First, the reversed tricorn:

Reversed Tricorn


Reversed Tricorn (anim)


Reversed Tricorn (col)


The nested tricorn:

Nested Tricorn (anim)


Nested Tricorn (col)


Nested Tricorn (red-green)


Nested Tricorn (variant col)


The nested quadricorn:

Nested Quadricorn (anim)


Nested Quadricorn


Nested Quadricorn (col #1)


Nested Quadricorn (col #2)


Finally (and ferally), the pentagonal octopus or pentapus:

Pentapus (anim)


Pentapus


Pentapus #2


Pentapus #3


Pentapus #4


Pentapus #5


Pentapus #6


Pentapus (col anim)


Elsewhere other-engageable:

The Art Grows Onda — the horned triangle and Katsushika Hokusai’s painting The Great Wave off Kanagawa (c. 1830)