A Seriously Sizzling Series of Super-Saucy Salvadisms

Some good quotes by Salvador Dalí (1904-89), who will need no introduction to keyly committed core components of the quixotically contrarian community. The Spanish should be reliable, but the English translations may not be (coz i dun em).


• A los seis años quería ser cocinero. A los siete quería ser Napoleón. Mi ambición no ha hecho más que crecer; ahora sólo quiero ser Salvador Dalí y nada más. Por otra parte, esto es muy difícil, ya que, a medida que me acerco a Salvador Dalí, él se aleja de mí.
 — At six years of age I wanted to be a chef. At seven I wanted to be Napoleon. My ambition has only grown since then, but now I only want to be Salvador Dalí and nothing more. Still, it’s very difficult, because the closer I get to Salvador Dalí, the further he gets from me.

• El canibalismo es una de las manifestaciones más evidentes de la ternura.
 — Cannibalism is a sure sign of affection.

• El que quiere interesar a los demás tiene que provocarlos.
 — He who wishes to interest other people needs to provoke them.

• …Es curioso, a mi me interesa mucho mas hablar, o estar en contacto con la gente que piensa lo contrario de lo que yo pienso, que de los que piensan lo mismo que pienso yo.
 — …It’s strange, but I’d much rather talk with or be in touch with people who think the opposite of what I think than with those who think the same as I do.

• Es fácil reconocer si el hombre tiene gusto: la alfombra debe combinar con las cejas.
 — It’s easy to tell if a man has good taste: his carpet should harmonize with his eyebrows.

• De ninguna manera volveré a México. No soporto estar en un país más surrealista que mis pinturas.
 — Under no circumstances will I return to Mexico. I cannot bear to be in a country more surreal than my own paintings.

• Hoy, el gusto por el defecto es tal que sólo parecen geniales las imperfecciones y sobre todo la fealdad. Cuando una Venus se parece a un sapo, los seudoestetas contemporáneos exclaman: ¡Es fuerte, es humano!
 — Today, a taste for the defective is so strong that the only things that seem attractive are imperfections and, above all, ugliness. When a Venus looks like a toad, the pseudo-aesthetes of today shout: “That’s great, that’s human!”

• Los errores tienen casi siempre un carácter sagrado. Nunca intentéis corregirlos. Al contrario: lo que procede es racionalizarlos, compenetrarse con aquellos integralmente. Después, os será posible subliminarlos.
— Mistakes almost always have a sacred character. Never try to correct them. On the contrary, you need to ponder them, to examine them from every angle. Afterwards, you will be able to absorb them.

• La Revolución Rusa es la Revolución Francesa que llega tarde, por culpa del frío.
 — The Russian Revolution is the French Revolution arriving late due to the cold.

• La única diferencia entre un loco y Dalí, es que Dalí no está loco.
 — The only difference between a madman and Dalí is that Dalí is not mad.

• La vida es aspirar, respirar y expirar.
 — Life is aspiring, respiring and expiring.

• Lo importante es que hablen de ti, aunque sea bien.
 — What’s important is that people talk about you, even if they only say good things.

• Lo único de lo que el mundo no se cansará nunca es de la exageración.
 — The only thing the world never tires of is exaggeration.

• ¡No podéis expulsarme porque Yo soy el Surrealismo!
 — You cannot expel me: I am Surrealism! (After being expelled from the surrealist movement in Paris.)

• Picasso es pintor. Yo también. Picasso es español. Yo también. Picasso es comunista. Yo tampoco.
 — Picasso is a painter. So am I. Picasso is a Spaniard. So am I. Picasso is a communist. Nor am I.

• Sin una audiencia, sin la presencia de espectadores, estas joyas no alcanzarían la función para la cual fueron creadas. El espectador, por tanto, es el artista final. Su vista, corazón, mente — con una mayor o menor capacidad para entender la intención del creador — da vida a las joyas.
 — Without an audience, without a circle of spectators, these jewels would never realize the purpose for which they were created. The spectator is therefore the final artist. His eyes, his heart, his mind — whether better or worse equipped to understand the purpose of the creator — give life to the jewels.

• Llamo a mi esposa: Gala, Galuska, Gradiva; Oliva por lo oval de su rostro y el color de su piel; Oliveta, diminutivo de la oliva; y sus delirantes derivados: Oliueta, Oriueta, Buribeta, Buriueteta, Siliueta, Solibubuleta, Oliburibuleta, Ciueta, Liueta. También la llamo Lionette, porque cuando se enfada ruge como el león de la Metro-Goldwyn Mayer.
 — I call my wife Gala, Galuska, Gradiva; Oliva for her oval face and the colour of her skin; Oliveta, diminutive of Oliva; and its delirious derivations: Oliueta, Oriueta, Buribeta, Buriueteta, Siliueta, Solibubuleta, Oliburibuleta, Ciueta, Liueta. I also call her Lionette, because when she’s angry she roars like the MGM lion.

• Sólo hay dos cosas malas que pueden pasarte en la vida, ser Pablo Picasso o no ser Salvador Dalí.
 — There are only two things that can go wrong for you in life: being Pablo Picasso or not being Salvador Dalí.

• Si muero, no moriré del todo.
 — If I die, I will not die completely. (Compare Horace’s Non omnis moriar, I will not wholly die.)

• La inteligencia sin ambición es un pájaro sin alas.
 — Intelligence without ambition is a bird without wings.

• No tengas miedo de la perfección, nunca la alcanzarás.
 — Don’t be afraid of perfection, because you’ll never achieve it.

• Para comprar mis cuadros hay que ser criminalmente rico como los norteamericanos.
 — To buy my paintings you have to be criminally rich like the Americans.

• Hay días en que pienso que voy a morir de una sobredosis de satisfacción.
 — There are days when I think that I will die of an overdose of satisfaction.

• El termómetro del éxito no es más que la envidia de los descontentos.
 — The thermometer of success is nothing more than the envy of the discontent.

• Lo menos que puede pedirse a una escultura es que no se mueva.
 — The least that one can ask of a sculpture is that it stays still.

• Mientras estamos dormidos en este mundo, estamos despiertos en el otro.
 — When we are asleep in this world, we are awake in another.

• Yo no tomo drogas. Yo soy una droga.
 — I do not take drugs. I am a drug.

• Los que no quieren imitar nada, no producen nada.
 — Those who refuse to imitate will never create.

• Las guerras nunca han hecho daño a nadie, excepto a la gente que muere.
 — Wars have never done harm to anyone, except to those who die.

• Gustar el dinero como me gusta, es nada menos que misticismo. El dinero es una gloria.
 — To relish money as I do is nothing short of mysticism. Money is a glory.

• La existencia de la realidad es la cosa más misteriosa, más sublime y más surrealista que se dé.
 — The existence of reality is the most mysterious, most sublime and most surrealist thing of all.

Performativizing Papyrocentricity #66

Papyrocentric Performativity Presents:

Pygmies and Secret PolicemenFootball Against the Enemy, Simon Kuper (1994)

Writhing Along in My AutomobileCrash: The Limits of Car Safety, Nicholas Faith (Boxtree 1998)

A Boy and His BanditBeloved and God: The Story of Hadrian and Antinoüs, Royston Lambert (Weidenfeld & Nicolson 1984)


Or Read a Review at Random: RaRaR

Eyeway to Shell


Previously pre-posted:

Eyeway to Ell — a better paronamasia than this one…

Phrock and Roll

What does a fractal phallus look like?

Millions of people have axed this corely key question.

The Overlord of the Über-Feral can answer it — keyly, corely and comprehensively dot dot dot

And here is the answer: Phrallic Frolics

Tright Treeing

Here is a very simple tree with two branches:

Two-branch tree


These are the steps that a simple computer program follows to draw the tree, with a red arrow indicating where the computer’s focus is at each stage:

Two-branch tree stage 1


2-Tree stage 2


2-Tree stage 3


2-Tree stage 4


2-Tree (animated)


If you had to give the computer an explicit instruction at each stage, the instructions might look something like this:

1. Start at node 1, draw a left branch to node 2 and colour the node green.
2. Return to node 1.
3. Draw a right branch to node 3 and colour the node green.
4. Finish.

Now try a slightly less simple tree with branches that fork twice:

Four-branch tree (static)


These are the steps that a simple computer program follows to draw the tree, with a red arrow indicating where the computer’s focus is at each stage:

4-Tree #1


4-Tree #2


4-Tree #3


4-Tree #4


4-Tree #5


4-Tree #6


4-Tree #7


4-Tree #8


4-Tree #9


4-Tree #10


4-Tree #11


4-Tree (animated)


If you had to give the computer an explicit instruction at each stage, the instructions might look something like this:

1. Start at node 1 and draw a left branch to node 2.
2. Draw a left branch to node 3 and colour it green.
3. Return to node 2.
4. Draw a right branch to node 4 and colour it green.
5. Return to node 2.
6. Return to node 1.
7. Draw a right branch to node 5.
8. Draw a left branch to node 6.
9. Draw a left branch to node 7 and colour it green.
10. Return to node 6.
11. Draw a left branch to node 8 and colour it green.
12. Finish.

It’s easy to see that the list of instructions would be much bigger for a tree with branches that fork three times, let alone four times or you. But you don’t need to give a full set of explicit instructions: you can use a program, or a list of instructions using variables. Suppose the tree has branches that fork f times. If f = 4, you will need an array variable level() with four values, level(1), level(2), level(3) and level(4). Now follow these instructions:

1. li = 1, level(1) = 0, level(2) = 0, ... level(f+1) = 0
2. level(li) = level(li) + 1
3. If level(li) = 1, draw a branch to the left and jump to step 7
4. If level(li) = 2, draw a branch to the right and jump to step 7
5. li = li - 1 (note that this line is reached if the tests fail in lines 3 and 4)
6. If li > 0, jump to step 2, otherwise jump to step 11
7. If li = f, draw a green node and jump to step 5
9. li = li + 1
10. Jump to step 2
11. Finish.

By changing the value of f, a computer can use those eleven basic instructions to draw any size of tree (I’ve left out details like changes in the length of branches and so on). When f = 4, the tree will look like this:

16-Tree (static)


16-Tree (animated)


With simple adjustments, the program can be used for other shapes whose underlying structure can be represented symbolically as a tree. The program is in fact a fractalizer, that is, it draws a fractal. So if you use a version of the program to draw fractals based on right-triangles, you can say you are “tright treeing” (tright = triangle-that-is-right).

Here is some tright treeing. Start with a simple isoceles right-triangle. It can be divided into smaller isoceles right-triangles by finding the midpoint of the hypotenuse, then repeating:

Right-triangle rep-2 stage 1


Right-triangle #2


Tright #3


Tright #4


Tright #5


Tright #6


Tright #7


Tright #7 (no internal lines)


You can distort the isoceles right-triangle in interesting ways by finding the midpoint of a side other than the hypotenuse, like this:

Right-triangle (distorted) #1


Distorted tright #2


Distorted tright #3


Distorted tright #4


Distorted tright #5


Distorted tright #6


Distorted tright #7


Distorted tright #8


Distorted tright #9


Distorted tright #10


Distorted tright #11


Distorted tright #12


Distorted tright #13


Distorted tright (animated)


Here’s a different right-triangle. When you divide it regularly, it looks like this:

Right-triangle rep-3 stage 1


Rep-3 Tright #2


3-Tright #3


3-Tright #4


3-Tright #5


3-Tright #6


3-Tright #7


3-Tright #8


3-Tright #9


3-Tright (one colour)


When you distort the divisions, you can create interesting fractals (click on images for larger versions):

Distorted 3-Tright


Distorted 3-Tright


Distorted 3-Tright


Distorted 3-Tright


Distorted 3-Tright


Distorted 3-Tright


Distorted 3-Tright (animated)


And when four of the distorted right-triangles (rep-2 or rep-3) are joined in a diamond, you can create shapes like these:

Creating a diamond #1


Creating a diamond #2


Creating a diamond #3


Creating a diamond #4


Creating a diamond (animated)


Rep-3 right-triangle diamond (divided)


Rep-3 right-triangle diamond (single colour)


Distorted rep-3 right-triangle diamond


Distorted 3-tright diamond


Distorted 3-tright diamond


Distorted 3-tright diamond


Distorted 3-tright diamond


Distorted 3-tright diamond


Distorted 3-tright diamond


Distorted 3-tright diamond


Distorted 3-tright diamond


Distorted 3-tright diamond


Distorted 3-tright diamond


Distorted 3-tright diamond (animated)


Distorted rep-2 right-triangle


Distorted 2-tright diamond


Distorted 2-tright diamond


Distorted 2-tright diamond


Distorted 2-tright diamond


Distorted 2-tright diamond (animated)


Tutelary Trinity

“There are three golden rules to ensure computer security. They are: do not own a computer; do not power it on; do not use it.” — Robert H. Morris (1932-2011), computer scientist and once head of the NSA.

Hymne à la Chim’ !

« Quelle chimère est-ce donc que l’homme, quelle nouveauté, quel monstre, quel chaos, quel sujet de contradiction, quel prodige, juge de toutes choses, imbécile ver de terre, dépositaire du vrai, cloaque d’incertitude et d’erreur, gloire et rebut de l’univers ! » — Pascal


“What a Chimera is man! What a novelty, a monster, a chaos, a contradiction, a prodigy! Judge of all things, an imbecile worm; depository of truth, and sewer of error and doubt; the glory and refuse of the universe.”

Toxic Turntable #15

Currently listening…

• Coöperatif-41, Bokej z Banvú (1997)
• Hedgehoppers, Age is a Perfect Curve (1986)
• Xexzi, W3 R Bilius Qeenz (1996)
• Koyske, Ijt Dael’dui (1973)
• Les Vraies Pêches, Huitztzilin (2014)
• Corpa Cicuga, Lo-Jakt (1983)
• DeciDames, Froschfrauen (1985)
• Tōbz Zuriū, Huāopāh Remixes (2000)
• Milly Boxbrough, Bojfrenzi (2012)
• Ituh Ba, Uyc Nue (1960)
• Ecce Tambora, En las Últimas (2009)
• Tinnitus Sect, Auricular (2014)
• Lupa In Silva, Exocets magnetiques (2007)
• P.A. Locatelli, Concerti Grossi (1990)
• Iümgenker, Gleimxi (2013)


Previously pre-posted:

Toxic Turntable #1
Toxic Turntable #2
Toxic Turntable #3
Toxic Turntable #4
Toxic Turntable #5
Toxic Turntable #6
Toxic Turntable #7
Toxic Turntable #8
Toxic Turntable #9
Toxic Turntable #10
Toxic Turntable #11
Toxic Turntable #12
Toxic Turntable #13
Toxic Turntable #14

Square Routes Re-Re-Re-Revisited

Discovering something that’s new to you in recreational maths is good. But so is re-discovering it by a different route. I’ve long been passionate about what happens when a point is allowed to jump repeatedly halfway towards the randomly chosen vertices of a square. If the point can choose any vertex any number of times, the interior of the square fills slowly and completely with points, like this:

Point jumping at random halfway towards vertices of a square


However, if the point is banned from jumping towards the same vertex twice or more in a row, an interesting fractal appears:

Fractal #1 — ban on jumping towards vertex vi twice or more


If the point can’t jump towards the vertex one place clockwise of the vertex it’s just jumped towards, this fractal appears:

Fractal #2 — ban on jumping towards vertex vi+1


If the point can’t jump towards the vertex two places clockwise of the vertex it’s just jumped towards, this fractal appears (two places clockwise is also two places anticlockwise, i.e. the banned vertex is diagonally opposite):

Fractal #3 — ban on jumping towards vertex vi+2


Now I’ve discovered a new way to create these fractals. You take a filled square, divide it into smaller squares, then remove some of them in a systematic way. Then you do the same to the smaller squares that remain. For fractal #1, you do this:

Fractal #1, stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Stage #7


Stage #8


Fractal #1 (animated)


For fractal #2, you do this:

Fractal #2, stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Stage #7


Stage #8


Fractal #2 (animated)


For fractal #3, you do this:

Fractal #3, stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Stage #7


Stage #8


Fractal #3 (animated)


If the sub-squares are coloured, it’s easier to understand how, say, fractal #1 is created:

Fractal #1 (coloured), stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Stage #7


Stage #8


Fractal #1 (coloured and animated)


The fractal is actually being created in quarters, with one quarter rotated to form the second, third and fourth quarters:

Fractal #1, quarter









Here’s an animation of the same process for fractal #3:

Fractal #3 (coloured and animated)


So you can create these fractals either with a jumping point or by subdividing a square. But in fact I discovered the subdivided-square route by looking at a variant of the jumping-point route. I wondered what would happen if you took a point inside a square, allowed it to trace all possible routes towards the vertices without marking its position, then imposed the restriction for Fractal #1 on its final jump, namely, that it couldn’t jump towards the vertex it jumped towards on its previous jump. If the point is marked after its final jump, this is what appears (if the routes chosen had been truly random, the image would be similar but messier):

Fractal #1, restriction on final jump


Then I imposed the same restriction on the point’s final two jumps:

Fractal #1, restriction on final 2 jumps


And final three jumps:

Fractal #1, restriction on final 3 jumps


And so on:

Fractal #1, restriction on final 4 jumps


Fractal #1, restriction on final 5 jumps


Fractal #1, restriction on final 6 jumps


Fractal #1, restriction on final 7 jumps


Here are animations of the same process applied to fractals #2 and #3:

Fractal #2, restrictions on final 1, 2, 3… jumps


Fractal #3, restrictions on final 1, 2, 3… jumps


The longer the points are allowed to jump before the final restriction is imposed on their n final jumps, the more densely packed the marked points will be:

Fractal #1, packed points #1


Packed points #2


Packed points #3


Eventually, the individual points will form a solid mass, like this:

Fractal #1, solid mass of points


Fractal #1, packed points (animated)


Previously pre-posted (please peruse):

Square Routes
Square Routes Revisited
Square Routes Re-Revisited
Square Routes Re-Re-Revisited