In Mandibular Metamorphosis, I looked at two distinct fractals and how you could turn one into the other in one smooth sweep. The Sierpiński triangle was one of the fractals:

Sierpiński triangle

The T-square fractal was the other:

T-square fractal (or part thereof)

And here they are turning into each other:

Sierpiński ↔ T-square (anim)

(Open in new window if distorted)

But what exactly is going on? To answer that, you need to see how the two fractals are created. Here are the stages for one way of constructing the Sierpiński triangle:

Sierpiński triangle #1

Sierpiński triangle #2

Sierpiński triangle #3

Sierpiński triangle #4

Sierpiński triangle #5

Sierpiński triangle #6

Sierpiński triangle #7

Sierpiński triangle #8

Sierpiński triangle #9

Constructing a Sierpiński triangle (anim)

When you take away all the construction lines, you’re left with a simple Sierpiński triangle:

Now here’s the construction of a T-square fractal:

T-square fractal #1

T-square fractal #2

T-square fractal #3

T-square fractal #4

T-square fractal #5

T-square fractal #6

T-square fractal #7

T-square fractal #8

T-square fractal #9

Constructing a T-square fractal (anim)

Take away the construction lines and you’re left with a simple T-square fractal:

T-square fractal

And now it’s easy to see how one turns into the other:

Sierpiński → T-square #1

Sierpiński → T-square #2

Sierpiński → T-square #3

Sierpiński → T-square #4

Sierpiński → T-square #5

Sierpiński → T-square #6

Sierpiński → T-square #7

Sierpiński → T-square #8

Sierpiński → T-square #9

Sierpiński → T-square #10

Sierpiński → T-square #11

Sierpiński → T-square #12

Sierpiński → T-square #13

Sierpiński ↔ T-square (anim)

(Open in new window if distorted)

**Post-Performative Post-Note**

Mandibular Metamorphosis also looked at a third fractal, the mandibles or jaws fractal. Because I haven’t included the jaws fractal in this analysis, the analysis is therefore agnathous, from Ancient Greek ἀ-, *a-*, “without”, + γνάθ-, *gnath-*, “jaw”.