God Give Me Benf’

In “Wake the Snake”, I looked at the digits of powers of 2 and mentioned a fascinating mathematical phenomenon known as Benford’s law, which governs — in a not-yet-fully-explained way — the leading digits of a wide variety of natural and human statistics, from the lengths of rivers to the votes cast in elections. Benford’s law also governs a lot of mathematical data. It states, for example, that the first digit, d, of a power of 2 in base b (except b = 2, 4, 8, 16…) will occur with the frequency logb(1 + 1/d). In base 10, therefore, Benford’s law states that the digits 1..9 will occur with the following frequencies at the beginning of 2^p:

1: 30.102999%
2: 17.609125%
3: 12.493873%
4: 09.691001%
5: 07.918124%
6: 06.694678%
7: 05.799194%
8: 05.115252%
9: 04.575749%

Here’s a graph of the actual relative frequencies of 1..9 as the leading digit of 2^p (open images in a new window if they appear distorted):


And here’s a graph for the predicted frequencies of 1..9 as the leading digit of 2^p, as calculated by the log(1+1/d) of Benford’s law:


The two graphs agree very well. But Benford’s law applies to more than one leading digit. Here are actual and predicted graphs for the first two leading digits of 2^p, 10..99:



And actual and predicted graphs for the first three leading digits of 2^p, 100..999:



But you can represent the leading digit of 2^p in another way: using an adaptation of the famous Ulam spiral. Suppose powers of 2 are represented as a spiral of squares that begins like this, with 2^0 in the center, 2^1 to the right of center, 2^2 above 2^1, and so on:

←←←⮲
432↑
501↑
6789

If the digits of 2^p start with 1, fill the square in question; if the digits of 2^p don’t start with 1, leave the square empty. When you do this, you get this interesting pattern (the purple square at the very center represents 2^0):

Ulam-like power-spiral for 2^p where 1 is the leading digit


Here’s a higher-resolution power-spiral for 1 as the leading digit:

Power-spiral for 2^p, leading-digit = 1 (higher resolution)


And here, at higher resolution still, are power-spirals for all the possible leading digits of 2^p, 1..9 (some spirals look very similar, so you have to compare those ones carefully):

Power-spiral for 2^p, leading-digit = 1 (very high resolution)


Power-spiral for 2^p, leading-digit = 2


Power-spiral for 2^p, ld = 3


Power-spiral for 2^p, ld = 4


Power-spiral for 2^p, ld = 5


Power-spiral for 2^p, ld = 6


Power-spiral for 2^p, ld = 7


Power-spiral for 2^p, ld = 8


Power-spiral for 2^p, ld = 9


Power-spiral for 2^p, ld = 1..9 (animated)


Now try the power-spiral of 2^p, ld = 1, in some other bases:

Power-spiral for 2^p, leading-digit = 1, base = 9


Power-spiral for 2^p, ld = 1, b = 15


You can also try power-spirals for other n^p. Here’s 3^p:

Power-spiral for 3^p, ld = 1, b = 10


Power-spiral for 3^p, ld = 2, b = 10


Power-spiral for 3^p, ld = 1, b = 4


Power-spiral for 3^p, ld = 1, b = 7


Power-spiral for 3^p, ld = 1, b = 18


Elsewhere Other-Accessible…

Wake the Snake — an earlier look at the digits of 2^p

Wake the Snake

In my story “Kopfwurmkundalini”, I imagined the square root of 2 as an infinitely long worm or snake whose endlessly varying digit-segments contained all stories ever (and never) written:

• √2 = 1·414213562373095048801688724209698078569671875376948073…

But there’s another way to get all stories ever written from the number 2. You don’t look at the root(s) of 2, but at the powers of 2:

• 2 = 2^1 = 2
• 4 = 2^2 = 2*2
• 8 = 2^3 = 2*2*2
• 16 = 2^4 = 2*2*2*2
• 32 = 2^5 = 2*2*2*2*2
• 64 = 2^6 = 2*2*2*2*2*2
• 128 = 2^7 = 2*2*2*2*2*2*2
• 256 = 2^8 = 2*2*2*2*2*2*2*2
• 512 = 2^9 = 2*2*2*2*2*2*2*2*2
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
• 2097152 = 2^21
• 4194304 = 2^22
• 8388608 = 2^23
• 16777216 = 2^24
• 33554432 = 2^25
• 67108864 = 2^26
• 134217728 = 2^27
• 268435456 = 2^28
• 536870912 = 2^29
• 1073741824 = 2^30
[...]

The powers of 2 are like an ever-lengthening snake swimming across a pool. The snake has an endlessly mutating head and a rhythmically waving tail with a regular but ever-more complex wake. That is, the leading digits of 2^p don’t repeat but the trailing digits do. Look at the single final digit of 2^p, for example:

• 02 = 2^1
• 04 = 2^2
• 08 = 2^3
• 16 = 2^4
• 32 = 2^5
• 64 = 2^6
• 128 = 2^7
• 256 = 2^8
• 512 = 2^9
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
• 2097152 = 2^21
• 4194304 = 2^22
[...]

The final digit of 2^p falls into a loop: 2 → 4 → 8 → 6 → 2 → 4→ 8…

Now try the final two digits of 2^p:

02 = 2^1
04 = 2^2
08 = 2^3
16 = 2^4
32 = 2^5
64 = 2^6
• 128 = 2^7
• 256 = 2^8
• 512 = 2^9
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
• 2097152 = 2^21
• 4194304 = 2^22
• 8388608 = 2^23
• 16777216 = 2^24
• 33554432 = 2^25
• 67108864 = 2^26
• 134217728 = 2^27
• 268435456 = 2^28
• 536870912 = 2^29
• 1073741824 = 2^30
[...]

Now there’s a longer loop: 02 → 04 → 08 → 16 → 32 → 64 → 28 → 56 → 12 → 24 → 48 → 96 → 92 → 84 → 68 → 36 → 72 → 44 → 88 → 76 → 52 → 04 → 08 → 16 → 32 → 64 → 28… Any number of trailing digits, 1 or 2 or one trillion, falls into a loop. It just takes longer as the number of trailing digits increases.

That’s the tail of the snake. At the other end, the head of the snake, the digits don’t fall into a loop (because of the carries from the lower digits). So, while you can get only 2, 4, 8 and 6 as the final digits of 2^p, you can get any digit but 0 as the first digit of 2^p. Indeed, I conjecture (but can’t prove) that not only will all integers eventually appear as the leading digits of 2^p, but they will do so infinitely often. Think of a number and it will appear as the leading digits of 2^p. Let’s try the numbers 1, 12, 123, 1234, 12345…:

16 = 2^4
128 = 2^7
12379400392853802748... = 2^90
12340799625835686853... = 2^1545
12345257952011458590... = 2^34555
12345695478410965346... = 2^63293
12345673811591269861... = 2^4869721
12345678260232358911... = 2^5194868
12345678999199154389... = 2^62759188

But what about the numbers 9, 98, 987, 986, 98765… as leading digits of 2^p? They don’t appear as quickly:

9007199254740992 = 2^53
98079714615416886934... = 2^186
98726397006685494828... = 2^1548
98768356967522174395... = 2^21257
98765563827287722773... = 2^63296
98765426081858871289... = 2^5194871
98765430693066680199... = 2^11627034
98765432584491513519... = 2^260855656
98765432109571471006... = 2^1641098748

Why do fragments of 123456789 appear much sooner than fragments of 987654321? Well, even though all integers occur infinitely often as leading digits of 2^p, some integers occur more often than others, as it were. The leading digits of 2^p are actually governed by a fascinating mathematical phenomenon known as Benford’s law, which states, for example, that the single first digit, d, will occur with the frequency log10(1 + 1/d). Here are the actual frequencies of 1..9 for all powers of 2 up to 2^101000, compared with the estimate by Benford’s law:

1: 30% of leading digits ↔ 30.1% estimated
2: 17.55% ↔ 17.6%
3: 12.45% ↔ 12.49%
4: 09.65% ↔ 9.69%
5: 07.89% ↔ 7.92%
6: 06.67% ↔ 6.69%
7: 05.77% ↔ 5.79%
8: 05.09% ↔ 5.11%
9: 04.56% ↔ 4.57%

Because (inter alia) 1 appears as the first digit of 2^p far more often than 9 does, the fragments of 123456789 appear faster than the fragments of 987654321. Mutatis mutandis, the same applies in all other bases (apart from bases that are powers of 2, where there’s a single leading digit, 1, 2, 4, 8…, followed by 0s). But although a number like 123456789 occurs much frequently than 987654321 in 2^p expressed in base 10 (and higher), both integers occur infinitely often.

As do all other integers. And because stories can be expressed as numbers, all stories ever (and never) written appear in the powers of 2. Infinitely often. You’ll just have to trim the tail of the story-snake.

Twi-Phi

Here’s a pentagon:

Stage #1


And here’s the pentagon with smaller pentagons on its vertices:

Stage #2


And here’s more of the same:

Stage #3


Stage #4


Stage #5


Stage #6


Stage #7


Stage #8


Animated fractal


At infinity, the smaller pentagons have reached out like arms to exactly fill the gaps between themselves without overlapping. But how much smaller is each set of smaller pentagons than its mother-pentagon when the gaps are exactly filled? Well, if the radius of the mother-pentagon is r, then the radius of each daughter-pentagon is r * 1/(φ^2) = r * 0·38196601125…

But what happens if the radius relationship of mother to daughter is r * 1/φ = r * 0·61803398874 = r * (φ-1)? Then you get this fractal:

Stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Stage #7


Stage #8


Stage #9


Animated fractal


Plow-Pair

Futoshiki is fun. It’s a number-puzzle where you use logic to re-create a 5×5 square in which every row and column contains the numbers 1 to 5. At first, most or all of the numbers are missing. You work out what those missing numbers are by using the inequality signs scattered over the futoshiki. Here’s an example:


There are no numbers at all in the futoshiki, so where do you start? Well, first let’s establish some vocabulary for discussing futoshiki. If we label squares by row and column, you can say that square (4,5), just above the lower righthand corner, dominates square (4,4), because (4,5) is on the dominant side of the inequality sign between the two squares (futōshiki, 不等式, means “inequality” in Japanese). Whatever individual number is in (4,5) must be greater than whatever individual number is in (4,4).

Conversely, you can say that (4,4) is dominated by (4,5). But that’s not the end of it: (4,4) is dominated by (4,5) but dominates (3,4), which in its turn dominates (2,4). In other words, there’s a chain of dominations. In this case, it’s a 4-chain, that is, it’s four squares long: (4,5) > (4,4) > (3,4) > (2,4), where (4,5) is the start-square and (2,4) is the end-square. Now, because 5 is the highest number in a 5×5 futoshiki, it can’t be in any square dominated by another square. And because 1 is always the lowest number in a futoshiki, it can’t be in any square that dominates another square. By extending that logic, you’ll see that 4 can’t be in the end-square of a 3-chain, (a,b) > (c,d) > (e,f), and 2 can’t be in the start-square of a 3-chain. Nor can 3 be in the start-square or end-square of a 4-chain.

Using all that logic, you can start excluding numbers from certain squares and working out sets of possible numbers in each square, like this:

[whoops: square contains errors that need to be corrected!]


Now look at column 1 and at row 4:


In column 1, the number 5 appears only once among the possibles, in (1,1); in row 4, the number 1 appears only once among the possibles, in (4,1). And if a number appears in only one square of a row or column, you know that it must be the number filling that particular square. So 5 must be the number filling (1,1) and 1 must be the number filling (4,1). And once a square is filled by a particular number, you can remove it from the sets of possibles filling the other squares of the row and column. I call this sweeping the row and column. Voilà:


Now that the 5 in (1,1) and the 1 in (4,1) have swept all other occurrences of 5 and 1 from the sets of possibles in column 1 and row 4, you can apply the only-once rule again. 2 appears only once in row 4 and 5 appears only once in column 4:


So you’ve got two more filled squares:


Now you can apply a more complex piece of logic. Look at the sets of possibles in row 3 and you’ll see that the set {2,3} occurs twice, in square (3,1) and square (3,4):


What does this double-occurrence of {2,3} mean? It means that if 2 is in fact the number filling (3,1), then 3 must be the number filling (3,4). And vice versa. Therefore 2 and 3 can occur only in those two squares and the two numbers can be excluded or swept from the sets of possibles filling the other squares in that row. You could call {2,3} a plow-pair or plow-pare, because it’s a pair that pares 2 and 3 from the other squares. So we have a pair-rule: if the same pair of possibles, {a,b}, appears in two squares in a row or column, then both a and b can be swept from the three other squares in that row or column. Using {2,3}, let’s apply the pair-rule to the futoshiki and run the plow-pare over row 3:


Now the pair-rule applies again, because {4,5} occurs twice in column 5:


And once the plow-pare has swept 4 and 5 from the other three squares in column 5, you’ll see that 3 is the only number left in square (1,5). Therefore 3 must fill (1,5):


Now 3 can be swept from the rest of row 1 and column 5:


And the pair-rule applies again, because {1,2} occurs twice in row 2:


Once 2 is swept from {2,3,4} in square (2,1) to leave {3,4}, 3 must be excluded from square (2,2), because (2,2) dominates (2,1) and 3 can’t be greater than itself. And once 3 is excluded from (2,2), it occurs only once in column 2:


Therefore 3 must fill (5,2), which dominates (5,1) and its set of possibles {2,3,4}. Because 3 can’t be greater than 4 or itself, 2 is the only possible filler for (5,1) and only 3 is left when 2 is swept from (3,1):


And here are the remaining steps in completing the futoshiki:

The complete futoshiki


Animation of the steps required to complete the futoshiki


Afterword

The pair-rule can be extended to a triplet-rule and quadruplet-rule:

• If three numbers {a,b,c} can occur in only three squares of a row or column, then a, b and c can be swept from the two remaining squares of the row or column.
• If four numbers {a,b,c,d} can occur in only four squares of a row or column, then a, b, c and d can be swept from the one remaining square of the row or column (therefore the number e must fill that remaining square).

But you won’t be able to apply the triplet-rule and quadruplet-rule as often as the pair-rule. Note also that the triplet-rule doesn’t work when {a,b,c} can occur in only two squares of a row or column. An n-rule applies only when the same n numbers of a set occur in n squares of a row or column. And n must be less than 5.


Post-Performative Post-Scriptum

Domination. Exclusion. Inequality. — an earlier look at futoshiki

Magiciprocal


A021023 Decimal expansion of 1/19.

0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8 [...] The magic square that uses the decimals of 1/19 is fully magic. — A021023 at the Online Encyclopedia of Integer Sequences

Delta Skelta

“When I get to the bottom I go back to the top of the slide,
Where I stop and I turn and I go for a ride
Till I get to the bottom and I see you again.” — The Beatles, “Helter Skelter” (1968)


First stage of fractal #1











Animated fractal #1


First stage of fractal #2













Animated fractal #2

See-Saw Jaw

From Sierpiński triangle to T-square to Mandibles (and back again) (animated)
(Open in new window if distorted)


Elsewhere other-accessible…

Mandibular Metamorphosis — explaining the animation above
Agnathous Analysis — more on the Sierpiński triangle and T-square fractal

Tri Num Sum

The Sum of ten consecutive Triangular Numbers:

Starting with T0 = 0, in base 10,

The sum of the first 10 triangular numbers from T0 to T9 = 165
The sum of the next 10 triangular numbers from T10 to T19 = 1165
The sum of the next 10 triangular numbers from T20 to T29 = 3165
The sum of the next 10 triangular numbers from T30 to T39 = 6165
The sum of the next 10 triangular numbers from T40 to T49 = 10165
The sum of the next 10 triangular numbers from T50 to T59 = 15165

and so on.

The same pattern is evident in other bases [when summing T0 to Tbase-1 and so on].


• As submitted by Julian Beauchamp, 9v19, to Shyam Sunder Gupta’s “Fascinating Triangular Numbers”.

1nf1nity

Here are the natural numbers or counting numbers:

• 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77... — A000027 at the Online Encyclopedia of Integer Sequences (OEIS)


Here are the prime numbers, or numbers divisible only by themselves and 1:

• 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271... — A000040 at the OEIS


Here are the palindromic prime numbers, or prime numbers that read the same both forwards and backwards:

• 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181... — A002385 at the OEIS


Finally, here are the repunit primes, or palindromic primes consisting only of 1s:

• 11, 1111111111111111111, 11111111111111111111111, 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111, 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111... — A004022 at the OEIS (see A004023 for numbers of 1s in each repunit prime)


It’s obvious that there are more counting numbers than primes, isn’t it? Well, no. There are in fact as many primes as counting numbers. And there may be as many palindromic primes as primes. And as many repunit primes as palindromic primes.

Middlemath

Suppose you start at the middle of a triangle, then map all possible ways you can jump eight times half-way towards one or another of the vertices of the triangle. At the end of the eight jumps, you mark your final position with a dot. You could jump eight times towards the same vertex, or once towards vertex 1, once towards vertex 2, and once again towards vertex 1. And so on. If you do this, the record of your jumps looks something like this:


The shape is a fractal called the Sierpiński triangle. But if you try the same thing with a square — map all possible jumping-routes you can follow towards one or another of the four vertices — you simply fill the interior of the square. There’s no interesting fractal:


So you need a plan with a ban. Try mapping all possible routes where you can’t jump towards the same vertex twice in a row. And you get this:

Ban on jumping towards same vertex twice in a row, v(t) ≠ v(t-1)


If you call the current vertex v(t) and the previous vertex v(t-1), the ban says that v(t) ≠ v(t-1). Now suppose you can’t jump towards the vertex one place clockwise of the previous vertex. Now the ban is v(t)-1 ≠ v(t-1) or v(t) ≠ v(t-1)+1 and this fractal appears:

v(t) ≠ v(t-1)+1


And here’s a ban on jumping towards the vertex two places clockwise (or counterclockwise) of the vertex you’ve just jumped towards:

v(t) ≠ v(t-1)+2


And finally the ban on jumping towards the vertex three places clockwise (or one place counterclockwise) of the vertex you’ve just jumped towards:

v(t) ≠ v(t-1)+3 (a mirror-image of v(t) ≠ v(t-1)+1, as above)


Now suppose you introduce a new point to jump towards at the middle of the square. You can create more fractals, but you have to adjust the kind of ban you use. The central point can’t be included in the ban or the fractal will be asymmetrical. So you continue taking account of the vertices, but if the previous jump was towards the middle, you ignore that jump. At least, that’s what I intended, but I wonder whether my program works right. Anyway, here are some of the fractals that it produces:

v(t) ≠ v(t-1) with central point (wcp)


v(t) ≠ v(t-1)+1, wcp


v(t) ≠ v(t-1)+2, wcp


And here are some bans taking account of both the previous vertex and the pre-previous vertex:

v(t) ≠ v(t-1) & v(t) ≠ v(t-2), wcp


v(t) ≠ v(t-1) & v(t-2)+1, wcp


v(t) ≠ v(t-1)+2 & v(t-2), wcp


v(t) ≠ v(t-1) & v(t-2)+1, wcp


v(t) ≠ v(t-1)+1 & v(t-2)+1, wcp


v(t) ≠ v(t-1)+2 & v(t-2)+1, wcp


v(t) ≠ v(t-1)+3 & v(t-2)+1, wcp


v(t) ≠ v(t-1) & v(t-2)+2, wcp


v(t) ≠ v(t-1)+1 & v(t-2)+2, wcp


v(t) ≠ v(t-1)+2 & v(t-2)+2, wcp


Now look at pentagons. They behave more like triangles than squares when you map all possible jumping-routes towards one or another of the five vertices. That is, a fractal appears:

All possible jumping-routes towards the vertices of a pentagon


But the pentagonal-jump fractals get more interesting when you introduce jump-bans:

v(t) ≠ v(t-1)


v(t) ≠ v(t-1)+1


v(t) ≠ v(t-1)+2


v(t) ≠ v(t-1) & v(t-2)


v(t) ≠ v(t-1)+2 & v(t-2)


v(t) ≠ v(t-1)+1 & v(t-2)+1


v(t) ≠ v(t-1)+3 & v(t-2)+1


v(t) ≠ v(t-1)+1 & v(t-2)+2


v(t) ≠ v(t-1)+2 & v(t-2)+2


v(t) ≠ v(t-1)+3 & v(t-2)+2


Finally, here are some pentagonal-jump fractals using a central point:








Post-Performative Post-Scriptum

I’m not sure if I’ve got the order of some bans right above. For example, should v(t) ≠ v(t-1)+1 & v(t-2)+2 really be v(t) ≠ v(t-1)+2 & v(t-2)+1? I don’t know and I’m not going to check. But the idea of jumping-point bans is there and that’s all you need if you want to experiment with these fractal methods for yourself.