*n* += digsum(*n*). It’s one of my favorite integer sequences — a rollercoaster to infinity. It works like this: you take a number, sum its digits, add the sum to the original number, and repeat:

1 → 2 → 4 → 8 → 16 → 23 → 28 → 38 → 49 → 62 → 70 → 77 → 91 → 101 → 103 → 107 → 115 → 122 → 127 → 137 → 148 → 161 → 169 → 185 → 199 → 218 → 229 → 242 → 250 → 257 → 271 → 281 → 292 → 305 → 313 → 320 → 325 → 335 → 346 → 359 → 376 → 392 → 406 → 416 → 427 → 440 → 448 → 464 → 478 → 497 → 517 → 530 → 538 → 554 → 568 → 587 → 607 → 620 → 628 → 644 → 658 → 677 → 697 → 719 → 736 → 752 → 766 → 785 → 805 → 818 → 835 → 851 → 865 → 884 → 904 → 917 → 934 → 950 → 964 → 983 → 1003 → 1007 → 1015 → 1022 → 1027 → 1037 → 1048 → 1061 → 1069 → 1085 → 1099 → 1118 → 1129 → 1142 → 1150 → 1157 → 1171 → 1181 → 1192 → 1205 → ...

I call it a rollercoaster to infinity because the digit-sum constantly rises and falls as *n* gets bigger and bigger. The most dramatic falls are when *n* gets one digit longer (except on the first occasion):

... → 8 (digit-sum=8) → 16 (digit-sum=7) → ...

... → 91 (ds=10) → 101 (ds=2) → ...

... → 983 (ds=20) → 1003 (ds=4) → ...

... → 9968 (ds=32) → 10000 (ds=1) → ...

... → 99973 (ds=37) → 100010 (ds=2) → ...

... → 999959 (ds=50) → 1000009 (ds=10) → ...

... → 9999953 (ds=53) → 10000006 (ds=7) → ...

... → 99999976 (ds=67) → 100000043 (ds=8) → ...

... → 999999980 (ds=71) → 1000000051 (ds=7) → ...

... → 9999999962 (ds=80) → 10000000042 (ds=7) → ...

... → 99999999968 (ds=95) → 100000000063 (ds=10) → ...

... → 999999999992 (ds=101) → 1000000000093 (ds=13) → ...

Look at 9968 → 10000, when the digit-sum goes from 32 to 1. That’s only the second time that digsum(*n*) = 1 in the sequence. Does it happen again? I don’t know.

And here’s something else I don’t know. Suppose you introduce a rule for the rollercoaster of *n* += digsum(*n*). You buy a ticket with a number on it: 1, 2, 3, 4, 5… Then you get on the rollercoaster powered by with that number. Now here’s the rule: Your ride on the rollercoaster ends when *n* += digsum(*n*) yields a rep-digit, i.e., a number whose digits are all the same. Here are the first few rides on the rollercoaster:

1 → 2 → 4 → 8 → 16 → 23 → 28 → 38 → 49 → 62 → 70 →77

2 → 4 → 8 → 16 → 23 → 28 → 38 → 49 → 62 → 70 →77

3 → 6 → 12 → 15 → 21 → 24 → 30 →33

4 → 8 → 16 → 23 → 28 → 38 → 49 → 62 → 70 →77

5 → 10 →11

6 → 12 → 15 → 21 → 24 → 30 →33

7 → 14 → 19 → 29 → 40 →44

8 → 16 → 23 → 28 → 38 → 49 → 62 → 70 →77

9 → 18 → 27 → 36 → 45 → 54 → 63 → 72 → 81 → 90 →99

10 →11

11 → 13 → 17 → 25 → 32 → 37 → 47 → 58 → 71 → 79 → 95 → 109 → 119 → 130 → 134 → 142 → 149 → 163 → 173 → 184 → 197 → 214 → 221 → 226 → 236 → 247 → 260 → 268 → 284 → 298 → 317 → 328 → 341 → 349 → 365 → 379 → 398 → 418 → 431 → 439 → 455 → 469 → 488 → 508 → 521 → 529 → 545 → 559 → 578 → 598 → 620 → 628 → 644 → 658 → 677 → 697 → 719 → 736 → 752 → 766 → 785 → 805 → 818 → 835 → 851 → 865 → 884 → 904 → 917 → 934 → 950 → 964 → 983 → 1003 → 1007 → 1015 → 1022 → 1027 → 1037 → 1048 → 1061 → 1069 → 1085 → 1099 → 1118 → 1129 → 1142 → 1150 → 1157 → 1171 → 1181 → 1192 → 1205 → 1213 → 1220 → 1225 → 1235 → 1246 → 1259 → 1276 → 1292 → 1306 → 1316 → 1327 → 1340 → 1348 → 1364 → 1378 → 1397 → 1417 → 1430 → 1438 → 1454 → 1468 → 1487 → 1507 → 1520 → 1528 → 1544 → 1558 → 1577 → 1597 → 1619 → 1636 → 1652 → 1666 → 1685 → 1705 → 1718 → 1735 → 1751 → 1765 → 1784 → 1804 → 1817 → 1834 → 1850 → 1864 → 1883 → 1903 → 1916 → 1933 → 1949 → 1972 → 1991 → 2011 → 2015 → 2023 → 2030 → 2035 → 2045 → 2056 → 2069 → 2086 → 2102 → 2107 → 2117 → 2128 → 2141 → 2149 → 2165 → 2179 → 2198 → 2218 → 2231 → 2239 → 2255 → 2269 → 2288 → 2308 → 2321 → 2329 → 2345 → 2359 → 2378 → 2398 → 2420 → 2428 → 2444 → 2458 → 2477 → 2497 → 2519 → 2536 → 2552 → 2566 → 2585 → 2605 → 2618 → 2635 → 2651 → 2665 → 2684 → 2704 → 2717 → 2734 → 2750 → 2764 → 2783 → 2803 → 2816 → 2833 → 2849 → 2872 → 2891 → 2911 → 2924 → 2941 → 2957 → 2980 → 2999 → 3028 → 3041 → 3049 → 3065 → 3079 → 3098 → 3118 → 3131 → 3139 → 3155 → 3169 → 3188 → 3208 → 3221 → 3229 → 3245 → 3259 → 3278 → 3298 → 3320 → 3328 → 3344 → 3358 → 3377 → 3397 → 3419 → 3436 → 3452 → 3466 → 3485 → 3505 → 3518 → 3535 → 3551 → 3565 → 3584 → 3604 → 3617 → 3634 → 3650 → 3664 → 3683 → 3703 → 3716 → 3733 → 3749 → 3772 → 3791 → 3811 → 3824 → 3841 → 3857 → 3880 → 3899 → 3928 → 3950 → 3967 → 3992 → 4015 → 4025 → 4036 → 4049 → 4066 → 4082 → 4096 → 4115 → 4126 → 4139 → 4156 → 4172 → 4186 → 4205 → 4216 → 4229 → 4246 → 4262 → 4276 → 4295 → 4315 → 4328 → 4345 → 4361 → 4375 → 4394 → 4414 → 4427 →4444

The 11-ticket is much better value than the tickets for 1..10. Bigger numbers behave like this:

1252 → 4444

1253 → 4444

1254 → 888888

1255 → 4444

1256 → 4444

1257 → 888888

1258 → 4444

1259 → 4444

1260 → 9999

1261 → 4444

1262 → 4444

1263 → 888888

1264 → 4444

1265 → 4444

1266 → 888888

1267 → 4444

1268 → 4444

1269 → 9999

1270 → 4444

1271 → 4444

1272 → 888888

1273 → 4444

1274 → 4444

Then all at once, a number-ticket turns golden and the rollercoaster-ride doesn’t end. So far, at least. I’ve tried, but I haven’t been able to find a rep-digit for 3515 and 3529 = 3515+digsum(3515) and so on:

3509 → 4444

3510 → 9999

3511 → 4444

3512 → 4444

3513 → 888888

3514 → 4444

3515 → ?

3516 → 888888

3517 → 4444

3518 → 4444

3519 → 9999

3520 → 4444

3521 → 4444

3522 → 888888

3523 → 4444

3524 → 4444

3525 → 888888

3526 → 4444

3527 → 4444

3528 → 9999

3529 → ?

3530 → 4444

3531 → 888888

3532 → 4444

Does 3515 ever yield a rep-digit for *n* += digsum(*n*)? It’s hard to believe it doesn’t, but I’ve no idea how to prove that it does. Except by simply riding the rollercoaster. And if the ride with the 3515-ticket never reaches a rep-digit, the rollercoaster will never let you know. How could it?

But here’s an example in base 23 of how a ticket for *n*+1 can give you a dramatically longer ride than a ticket for *n* and *n*+2:

MI → EEE (524 → 7742)

MJ → EEE (525 → 7742)

MK → 444 (526 → 2212)

ML → 444 (527 → 2212)

MM → MMMMMM (528 → 148035888)

100 → 444 (529 → 2212)

101 → 444 (530 → 2212)

102 → EEE (531 → 7742)

103 → 444 (532 → 2212)

104 → 444 (533 → 2212)

105 → EEE (534 → 7742)

106 → EEE (535 → 7742)

107 → 444 (536 → 2212)

108 → EEE (537 → 7742)

109 → 444 (538 → 2212)

10A → MMMMMM (539 → 148035888)

10B → EEE (540 → 7742)

10C → EEE (541 → 7742)

10D → EEE (542 → 7742)

10E → EEE (543 → 7742)

10F → 444 (544 → 2212)

10G → EEE (545 → 7742)

10H → EEE (546 → 7742)

10I → EEE (547 → 7742)

10J → 444 (548 → 2212)

10K → 444 (549 → 2212)

10L → MMMMMM (550 → 148035888)

10M → EEE (551 → 7742)

110 → EEE (552 → 7742)