# We Can Circ It Out

It’s a pretty little problem to convert this triangular fractal…

Sierpiński triangle (Wikipedia)

…into its circular equivalent:

Sierpiński triangle as circle

Sierpiński triangle to circle (animated)

But once you’ve circ’d it out, as it were, you can easily adapt the technique to fractals based on other polygons:

T-square fractal (Wikipedia)

T-square fractal as circle

T-square fractal to circle (animated)

Elsewhere other-accessible…

Dilating the Delta — more on converting polygonic fractals to circles…

# Six Mix Trix

Here’s an equilateral triangle divided into six smaller triangles:

Equilateral triangle divided into six irregular triangles (Stage #1)

Now keep on dividing:

Stage #2

Stage #3

Stage #4

Stage #5

Equilateral triangle dividing into six irregular triangles (animated)

But what happens if you divide the triangle, then discard some of the sub-triangles, then repeat? You get a self-similar shape called a fractal:

Stage #2

Stage #3

Stage #4

Stage #5

Stage #6

Triangle fractal (animated)

Here’s another example:

Stage #2

Stage #3

Stage #4

Stage #5

Stage #6

Stage #7

Triangle fractal (animated)

You can also delay the divide-and-discard to create a more symmetrical fractal, like this:

Stage #2

Stage #3

Stage #4

Stage #5

Stage #6

Stage #7

Triangle fractal (animated)

What next? You can use trigonometry to turn the cramped triangle into a circle:

Triangular fractal

Circular fractal
(Open in new window for full image)

Triangle-to-circle (animated)

Here’s another example:

Triangular fractal

Circular fractal

Triangle-to-circle (animated)

And below are some more circular fractals converted from triangular fractals. Some of them look like distorted skulls or transdimensional Lovecraftian monsters:

(Open in new window for full image)

Previous Pre-Posted

Circus Trix — an earlier look at sextally-divided-equilateral-triangle fractals

# Circus Trix

Here’s a trix, or triangle divided into six smaller triangles:

Trix, or triangle divided into six smaller triangles

Now each sub-triangle becomes a trix in its turn:

Trix stage #2

And again:

Trix #3

Trix #4

Trix #5

Trix divisions (animated)

Now try dividing the trix and discarding sub-triangles, then repeating the process. A fractal appears:

Trix fractal #1

Trix fractal #2

Trix fractal #3

Trix fractal #4

Trix fractal #5

Trix fractal #6

Trix fractal #7

Trix fractal (animated)

But what happens if you delay the discarding, first dividing the trix completely into sub-triangles, then dividing completely again? You get a more attractive and symmetrical fractal, like this:

And it’s easy to convert the triangle into a circle, creating a fractal like this:

Delayed-discard trix fractal converted into circle

Delayed-discard trix fractal to circular fractal (animated)

Now a trix fractal that looks like a hawk-god:

Trix hawk-god #1

Trix hawk-god #2

Trix hawk-god #3

Trix hawk-god #4

Trix hawk-god #5

Trix hawk-god #6

Trix hawk-god #7

Trix hawk-god (animated)

Trix hawk-god converted to circle

Trix hawk-god to circle (animated)

If you delay the discard, you get this:

And here are more delayed-discard trix fractals:

Various circular trix-fractals (animated)

Post-Performative Post-Scriptum

In Latin, circus means “ring, circle” — the English word “circle” is actually from the Latin diminutive circulus, meaning “little circle”.

# Dilating the Delta

A circle with a radius of one unit has an area of exactly π units = 3.141592… units. An equilateral triangle inscribed in the unit circle has an area of 1.2990381… units, or 41.34% of the area of the unit circle.

In other words, triangles are cramped! And so it’s often difficult to see what’s going on in a triangle. Here’s one example, a fractal that starts by finding the centre of the equilateral triangle:

Triangular fractal stage #1

Next, use that central point to create three more triangles:

Triangular fractal stage #2

And then use the centres of each new triangle to create three more triangles (for a total of nine triangles):

Triangular fractal stage #3

And so on, trebling the number of triangles at each stage:

Triangular fractal stage #4

Triangular fractal stage #5

As you can see, the triangles quickly become very crowded. So do the central points when you stop drawing the triangles:

Triangular fractal stage #6

Triangular fractal stage #7

Triangular fractal stage #8

Triangular fractal stage #9

Triangular fractal stage #10

Triangular fractal stage #11

Triangular fractal stage #12

Triangular fractal stage #13

Triangular fractal (animated)

The cramping inside a triangle is why I decided to dilate the delta like this:

Triangular fractal

Circular fractal from triangular fractal

Triangular fractal to circular fractal (animated)

Formation of the circular fractal (animated)

And how do you dilate the delta, or convert an equilateral triangle into a circle? You use elementary trigonometry to expand the perimeter of the triangle so that it lies on the perimeter of the unit circle. The vertices of the triangle don’t move, because they already lie on the perimeter of the circle, but every other point, p, on the perimeter of the triangles moves outward by a fixed amount, m, depending on the angle it makes with the center of the triangle.

Once you have m, you can move outward every point, p(1..i), that lies between p on the perimeter and the centre of the triangle. At least, that’s the theory between the dilation of the delta. In practice, all you need is a point, (x,y), inside the triangle. From that, you can find the angle, θ, and distance, d, from the centre, calculate m, and move (x,y) to d * m from the centre.

You can apply this technique to any fractal created in an equilateral triangle. For example, here’s the famous Sierpiński triangle in its standard form as a delta, then as a dilated delta or circle:

Sierpiński triangle

Sierpiński triangle to circular Sierpiński fractal

Sierpiński triangle to circle (animated)

But why stop at triangles? You can use the same elementary trigonometry to convert any regular polygon into a circle. A square inscribed in a unit circle has an area of 2 units, or 63.66% of the area of the unit circle, so it too is cramped by comparison with the circle. Here’s a square fractal that I’ve often posted before:

Square fractal, jump = 1/2, ban on jumping towards any vertex twice in a row

It’s created by banning a randomly jumping point from moving twice in a row 1/2 of the distance towards the same vertex of the square. When you dilate the fractal, it looks like this:

Circular fractal from square fractal, j = 1/2, ban on jumping towards vertex v(i) twice in a row

Circular fractal from square (animated)

And here’s a related fractal where the randomly jumping point can’t jump towards the vertex directly clockwise from the vertex it’s previously jumped towards (so it can jump towards the same vertex twice or more):

Square fractal, j = 1/2, ban on vertex v(i+1)

When the fractal is dilated, it looks like this:

Circular fractal from square, i = 1

Circular fractal from square (animated)

In this square fractal, the randomly jumping point can’t jump towards the vertex directly opposite the vertex it’s previously jumped towards:

Square fractal, ban on vertex v(i+2)

And here is the dilated version:

Circular fractal from square, i = 2

Circular fractal from square (animated)

And there are a lot more fractals where those came from. Infinitely many, in fact.

# The Choice of the Circle

Here’s an elementary mathematical problem: how many ways are there to choose three numbers from a set of six numbers? If the set is (1, 2, 3, 4, 5, 6), these are the possible choices (or combinations):

(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (1, 5, 6), (2, 3, 4), (2, 3, 5), (2, 3, 6), (2, 4, 5), (2, 4, 6), (2, 5, 6), (3, 4, 5), (3, 4, 6), (3, 5, 6), (4, 5, 6) (c = 20)

So 6C3 = 20 (C stands for “combination”). The general formula is nCr = (n! / (n-r)!) / r!, where n is the number to choose from, r is the number of choices and n! is factorial n, or n multiplied by all numbers less than itself. For example, 6! = 6 * 5 * 4 * 3 * 2 * 1 = 720. When n = 6 and c = 3, 6C3 = (6! / (6-3)!) / 3! = (720 / 6) / 6 = 20.

There isn’t much visual appeal in the choices above, but there’s a simple way to change that. Take the ways of choosing two numbers from a set of ten. They start like this:

(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), (3, 4), (3, 5), (3, 6)…

Suppose each choice represents the midpoint of two points chosen from a set of ten points around a pentagon, so that (1, 2) is half-way between points 1 and 2, (3, 5) is half-way between points 3 and 5, and so on:

Now take the ways of choosing three numbers from a set of ten:

(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 2, 7), (1, 2, 8), (1, 2, 9), (1, 2, 10), (1, 3, 4), (1, 3, 5), (1, 3, 6), (1, 3, 7), (1, 3, 8), (1, 3, 9), (1, 3, 10)…

Now the pentagon looks like this, with (1, 2, 3) representing the point midway between 1, 2 and 3, (1, 3, 9) representing the point midway between 1, 3 and 9, and so on:

Now here are 10C4, 10C5 and 10C6 for the pentagon:

You can also generate the points 5C4 = 5, then add them to the original five points and generate 10C4:

5C4

10C4

And here are 5C5, 6C5 and 12C5:

Here are 7C7 and 8C8, adding points as for 5C4:

And here is 12C6 using a dodecagon:

And various nCr for dodecagons and other polygons:

This method can also be used to represent the partitions of n, or the number of sets whose members sum to n. The partitions of 5 are these:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)

There are seven partitions, so p(5) = 7. Partitions start small and get very large, starting with p(1), p(2), p(3) and so on:

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173525, 204226, 239943, 281589, 329931, 386155, 451276, 526823, 614154, 715220, 831820, 966467, 1121505, 1300156…

Suppose the partitions of n are treated as sets of points around a polygon with n vertices. Each set is then used to generate the point midway between its members. For example, (5, 4, 4, 2) is one partition of 15 and would represent the point midway between 5, 4, 4 and 2 of a pentadecagon. Here is a graphical representation of p(30):

Here are graphical representations for the partitions 5 to 15, then 15 to 60 in increments of 5 (15, 20, 25, etc):

And here are some close-ups for the partitions of 35 and 40:

# Lette’s Roll

A roulette is a little wheel or little roller, but it’s much more than a game in a casino. It can also be one of a family of curves created by tracing the path of a point on a rotating circle. Suppose a circle rolls around another circle of the same size. This is the resultant roulette:

The shape is called a cardioid, because it looks like a heart (kardia in Greek). Now here’s a circle with radius r rolling around a circle with radius 2r:

That shape is a nephroid, because it looks like a kidney (nephros in Greek).

This is a circle with radius r rolling around a circle with radius 3r:

And this is r and 4r:

The shapes above might be called outer roulettes. But what if a circle rolls inside another circle? Here’s an inner roulette whose radius is three-fifths (0.6) x the radius of its rollee:

The same roulette appears inverted when the inner circle has a radius two-fifths (0.4) x the radius of the rollee:

But what happens when the circle rolling “inside” is larger than the rollee? That is, when the rolling circle is effectively swinging around the rollee, like a bunch of keys being twirled on an index finger? If the rolling radius is 1.5 times larger, the roulette looks like this:

If the rolling radius is 2 times larger, the roulette looks like this:

Here are more outer, inner and over-sized roulettes:

And you can have circles rolling inside circles inside circles:

And here’s another circle-in-a-circle in a circle: