Delta Skelta

“When I get to the bottom I go back to the top of the slide,
Where I stop and I turn and I go for a ride
Till I get to the bottom and I see you again.” — The Beatles, “Helter Skelter” (1968)


First stage of fractal #1











Animated fractal #1


First stage of fractal #2













Animated fractal #2

Six Mix Trix

Here’s an equilateral triangle divided into six smaller triangles:

Equilateral triangle divided into six irregular triangles (Stage #1)


Now keep on dividing:

Stage #2


Stage #3


Stage #4


Stage #5


Equilateral triangle dividing into six irregular triangles (animated)


But what happens if you divide the triangle, then discard some of the sub-triangles, then repeat? You get a self-similar shape called a fractal:

Divide-and-discard stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Triangle fractal (animated)


Here’s another example:

Divide-and-discard stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Stage #7


Triangle fractal (animated)


You can also delay the divide-and-discard to create a more symmetrical fractal, like this:

Delayed divide-and-discard stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Stage #7


Triangle fractal (animated)


What next? You can use trigonometry to turn the cramped triangle into a circle:

Triangular fractal

Circular fractal
(Open in new window for full image)


Triangle-to-circle (animated)


Here’s another example:

Triangular fractal

Circular fractal


Triangle-to-circle (animated)


And below are some more circular fractals converted from triangular fractals. Some of them look like distorted skulls or transdimensional Lovecraftian monsters:

(Open in new window for full image)


















Previous Pre-Posted

Circus Trix — an earlier look at sextally-divided-equilateral-triangle fractals

Bent Pent

This is a beautiful and interesting shape, reminiscent of a piece of jewellery:

Pentagons in a ring


I came across it in this tricky little word-puzzle:

Word puzzle using pentagon-ring


Here’s a printable version of the puzzle:

Printable puzzle


Let’s try placing some other regular polygons with s sides around regular polygons with s*2 sides:

Hexagonal ring of triangles


Octagonal ring of squares


Decagonal ring of pentagons


Dodecagonal ring of hexagons


Only regular pentagons fit perfectly, edge-to-edge, around a regular decagon. But all these polygonal-rings can be used to create interesting and beautiful fractals, as I hope to show in a future post.

This Charming Dis-Arming

One of the charms of living in an old town or city is finding new routes to familiar places. It’s also one of the charms of maths. Suppose a three-armed star sprouts three half-sized arms from the end of each of its three arms. And then sprouts three quarter-sized arms from the end of each of its nine new arms. And so on. This is what happens:

Three-armed star


3-Star sprouts more arms


Sprouting 3-Star #3


Sprouting 3-Star #4


Sprouting 3-Star #5


Sprouting 3-Star #6


Sprouting 3-Star #7


Sprouting 3-Star #8


Sprouting 3-Star #9


Sprouting 3-Star #10


Sprouting 3-Star #11 — the Sierpiński triangle


Sprouting 3-star (animated)


The final stage is a famous fractal called the Sierpiński triangle — the sprouting 3-star is a new route to a familiar place. But what happens when you trying sprouting a four-armed star in the same way? This does:

Four-armed star #1


Sprouting 4-Star #2


Sprouting 4-Star #3


Sprouting 4-Star #4


Sprouting 4-Star #5


Sprouting 4-Star #6


Sprouting 4-Star #7


Sprouting 4-Star #8


Sprouting 4-Star #9


Sprouting 4-Star #10


Sprouting 4-star (animated)


There’s no obvious fractal with a sprouting 4-star. Not unless you dis-arm the 4-star in some way. For example, you can ban any new arm sprouting in the same direction as the previous arm:

Dis-armed 4-star (+0) #1


Dis-armed 4-Star (+0) #2


Dis-armed 4-Star (+0) #3


Dis-armed 4-Star (+0) #4


Dis-armed 4-Star (+0) #5


Dis-armed 4-Star (+0) #6


Dis-armed 4-Star (+0) #7


Dis-armed 4-Star (+0) #8


Dis-armed 4-Star (+0) #9


Dis-armed 4-Star (+0) #10


Dis-armed 4-star (+0) (animated)


Once again, it’s a new route to a familiar place (for keyly committed core components of the Overlord-of-the-Über-Feral community, anyway). Now try banning an arm sprouting one place clockwise of the previous arm:

Dis-armed 4-Star (+1) #1


Dis-armed 4-Star (+1) #2


Dis-armed 4-Star (+1) #3


Dis-armed 4-Star (+1) #4


Dis-armed 4-Star (+1) #5


Dis-armed 4-Star (+1) #6


Dis-armed 4-Star (+1) #7


Dis-armed 4-Star (+1) #8


Dis-armed 4-Star (+1) #9


Dis-armed 4-Star (+1) #10


Dis-armed 4-Star (+1) (animated)


Again it’s a new route to a familiar place. Now trying banning an arm sprouting two places clockwise (or anti-clockwise) of the previous arm:

Dis-armed 4-Star (+2) #1


Dis-armed 4-Star (+2) #2


Dis-armed 4-Star (+2) #3


Dis-armed 4-Star (+2) #4


Dis-armed 4-Star (+2) #5


Dis-armed 4-Star (+2) #6


Dis-armed 4-Star (+2) #7


Dis-armed 4-Star (+2) #8


Dis-armed 4-Star (+2) #9


Dis-armed 4-Star (+2) #10


Dis-armed 4-Star (+2) (animated)


Once again it’s a new route to a familiar place. And what happens if you ban an arm sprouting three places clockwise (or one place anti-clockwise) of the previous arm? You get a mirror image of the Dis-armed 4-Star (+1):

Dis-armed 4-Star (+3)


Here’s the Dis-armed 4-Star (+1) for comparison:

Dis-armed 4-Star (+1)


Elsewhere other-accessible

Boole(b)an #2 — other routes to the fractals seen above

Trifylfots

Here’s a simple fractal created by dividing an equilateral triangle into smaller equilateral triangles, then discarding (and rotating) some of those sub-triangles, then doing the same to the sub-triangles:

Fractangle (triangle-fractal) (stage 1)


Fractangle #2


Fractangle #3


Fractangle #4


Fractangle #5


Fractangle #6


Fractangle #7


Fractangle #8


Fractangle #9


Fractangle (animated)


I’ve used the same fractangle to create this shape, which is variously known as a swastika (from Sanskrit svasti, “good luck, well-being”), a gammadion (four Greek Γs arranged in a circle) or a fylfot (from the shape being used to “fill the foot” of a stained glass window in Christian churches):

Trifylfot


Because it’s a fylfot created ultimately from a triangle, I’m calling it a trifylfot (TRIFF-ill-fot). Here’s how you make it:

Trifylfot (stage 1)


Trifylfot #2


Trifylfot #3


Trifylfot #4


Trifylfot #5


Trifylfot #6


Trifylfot #7


Trifylfot #8


Trifylfot #9


Trifylfot (animated)


And here are more trifylfots created from various forms of fractangle:













































Elsewhere other-accessible

Fractangular Frolics — more on fractals from triangles

Circus Trix

Here’s a trix, or triangle divided into six smaller triangles:

Trix, or triangle divided into six smaller triangles


Now each sub-triangle becomes a trix in its turn:

Trix stage #2


And again:

Trix #3


Trix #4


Trix #5


Trix divisions (animated)


Now try dividing the trix and discarding sub-triangles, then repeating the process. A fractal appears:

Trix fractal #1


Trix fractal #2


Trix fractal #3


Trix fractal #4


Trix fractal #5


Trix fractal #6


Trix fractal #7


Trix fractal (animated)


But what happens if you delay the discarding, first dividing the trix completely into sub-triangles, then dividing completely again? You get a more attractive and symmetrical fractal, like this:

Trix fractal (delayed discard)


And it’s easy to convert the triangle into a circle, creating a fractal like this:

Delayed-discard trix fractal converted into circle


Delayed-discard trix fractal to circular fractal (animated)


Now a trix fractal that looks like a hawk-god:

Trix hawk-god #1


Trix hawk-god #2


Trix hawk-god #3


Trix hawk-god #4


Trix hawk-god #5


Trix hawk-god #6


Trix hawk-god #7


Trix hawk-god (animated)


Trix hawk-god converted to circle


Trix hawk-god to circle (animated)


If you delay the discard, you get this:

Trix hawk-god circle (delayed discard)


And here are more delayed-discard trix fractals:







Various circular trix-fractals (animated)


Post-Performative Post-Scriptum

In Latin, circus means “ring, circle” — the English word “circle” is actually from the Latin diminutive circulus, meaning “little circle”.

Fractangular Frolics

Here’s an interesting shape that looks like a distorted and dissected capital S:

A distorted and dissected capital S


If you look at it more closely, you can see that it’s a fractal, a shape that contains itself over and over on smaller and smaller scales. First of all, it can be divided completely into three copies of itself (each corresponding to a line of the fractangle seed, as shown below):

The shape contains three smaller versions of itself


The blue sub-fractal is slightly larger than the other two (1.154700538379251…x larger, to be more exact, or √(4/3)x to be exactly exact). And because each sub-fractal can be divided into three sub-sub-fractals, the shape contains smaller and smaller copies of itself:

Five more sub-fractals


But how do you create the shape? You start by selecting three lines from this divided equilateral triangle:

A divided equilateral triangle


These are the three lines you need to create the shape:

Fractangle seed (the three lines correspond to the three sub-fractals seen above)


Now replace each line with a half-sized set of the same three lines:

Fractangle stage #2


And do that again:

Fractangle stage #3


And again:

Fractangle stage #4


And carry on doing it as you create what I call a fractangle, i.e. a fractal derived from a triangle:

Fractangle stage #5


Fractangle stage #6


Fractangle stage #7


Fractangle stage #8


Fractangle stage #9


Fractangle stage #10


Fractangle stage #11


Here’s an animation of the process:

Creating the fractangle (animated)


And here are more fractangles created in a similar way from three lines of the divided equilateral triangle:

Fractangle #2


Fractangle #2 (anim)

(open in new window if distorted)


Fractangle #2 (seed)


Fractangle #3


Fractangle #3 (anim)


Fractangle #3 (seed)


Fractangle #4


Fractangle #4 (anim)


Fractangle #4 (seed)


You can also use a right triangle to create fractangles:

Divided right triangle for fractangles


Here are some fractangles created from three lines chosen of the divided right triangle:

Fractangle #5


Fractangle #5 (anim)


Fractangle #5 (seed)


Fractangle #6


Fractangle #6 (anim)


Fractangle #6 (seed)


Fractangle #7


Fractangle #7 (anim)


Fractangle #7 (seed)


Fractangle #8


Fractangle #8 (anim)


Fractangle #8 (seed)


Hour Re-Powered

Pre-previously on Overlord in terms of the Über-Feral, I looked at my favorite member of the fractal community, the Hourglass Fractal:

The hourglass fractal


A real hourglass for comparison


As I described how I discovered the hourglass fractal indirectly and by accident, then showed how to create it directly, using two isosceles triangles set apex-to-apex in the form of an hourglass:

Triangles to hourglass #1


Triangles to hourglass #2


Triangles to hourglass #3


Triangles to hourglass #4


Triangles to hourglass #5


Triangles to hourglass #6

[…]

Triangles to hourglass #10


Triangles to hourglass #11


Triangles to hourglass #12


Triangles to hourglass (animated)


Now, here’s an even simpler way to create the hourglass fractal, starting with a single vertical line:

Line to hourglass #1


Line to hourglass #2


Line to hourglass #3


Line to hourglass #4


Line to hourglass #5


Line to hourglass #6


Line to hourglass #7


Line to hourglass #8


Line to hourglass #9


Line to hourglass #10


Line to hourglass #11


Line to hourglass (animated)


Hour Power

Would it be my favorite fractal if I hadn’t discovered it for myself? It might be, because I think it combines great simplicity with great beauty. I first came across it when I was looking at this rep-tile, that is, a shape that can be divided into smaller copies of itself:

Rep-4 L-Tromino


It’s called a L-tromino and is a rep-4 rep-tile, because it can be divided into four copies of itself. If you divide the L-tromino into four sub-copies and discard one particular sub-copy, then repeat again and again, you’ll get this fractal:

Tromino fractal #1


Tromino fractal #2


Tromino fractal #3


Tromino fractal #4


Tromino fractal #5


Tromino fractal #6


Tromino fractal #7


Tromino fractal #8


Tromino fractal #9


Tromino fractal #10


Tromino fractal #11


Hourglass fractal (animated)


I call it an hourglass fractal, because it reminds me of an hourglass:

A real hourglass


The hourglass fractal for comparison


I next came across the hourglass fractal when applying the same divide-and-discard process to a rep-4 square. The first fractal that appears is the Sierpiński triangle:

Square to Sierpiński triangle #1


Square to Sierpiński triangle #2


Square to Sierpiński triangle #3


[…]


Square to Sierpiński triangle #10


Square to Sierpiński triangle (animated)


However, you can rotate the sub-squares in various ways to create new fractals. Et voilà, the hourglass fractal appears again:

Square to hourglass #1


Square to hourglass #2


Square to hourglass #3


Square to hourglass #4


Square to hourglass #5


Square to hourglass #6


Square to hourglass #7


Square to hourglass #8


Square to hourglass #9


Square to hourglass #10


Square to hourglass #11


Square to hourglass (animated)


Finally, I was looking at variants of the so-called chaos game. In the standard chaos game, a point jumps half-way towards the randomly chosen vertices of a square or other polygon. In this variant of the game, I’ve added jump-towards-able mid-points to the sides of the square and restricted the point’s jumps: it can only jump towards the points that are first-nearest, seventh-nearest and eighth-nearest. And again the hourglass fractal appears:

Chaos game to hourglass #1


Chaos game to hourglass #2


Chaos game to hourglass #3


Chaos game to hourglass #4


Chaos game to hourglass #5


Chaos game to hourglass #6


Chaos game to hourglass (animated)


But what if you want to create the hourglass fractal directly? You can do it like this, using two isosceles triangles set apex-to-apex in the form of an hourglass:

Triangles to hourglass #1


Triangles to hourglass #2


Triangles to hourglass #3


Triangles to hourglass #4


Triangles to hourglass #5


Triangles to hourglass #6


Triangles to hourglass #7


Triangles to hourglass #8


Triangles to hourglass #9


Triangles to hourglass #10


Triangles to hourglass #11


Triangles to hourglass #12


Triangles to hourglass (animated)


Fractal + Star = Fractar

Here’s a three-armed star made with three lines radiating at intervals of 120°:

Triangular fractal stage #1


At the end of each of the three lines, add three more lines at half the length:

Triangular fractal #2


And continue like this:

Triangular fractal #3


Triangular fractal #4


Triangular fractal #5


Triangular fractal #6


Triangular fractal #7


Triangular fractal #8


Triangular fractal #9


Triangular fractal #10


Triangular fractal (animated)


Because this fractal is created from a series of stars, you could call it a fractar. Here’s a black-and-white version:

Triangular fractar (black-and-white)


Triangular fractar (black-and-white) (animated)
(Open in a new window for larger version if the image seems distorted)


A four-armed star doesn’t yield an easily recognizable fractal in a similar way, so let’s try a five-armed star:

Pentagonal fractar stage #1


Pentagonal fractar #2


Pentagonal fractar #3


Pentagonal fractar #4


Pentagonal fractar #5


Pentagonal fractar #6


Pentagonal fractar #7


Pentagonal fractar (animated)


Pentagonal fractar (black-and-white)


Pentagonal fractar (bw) (animated)


And here’s a six-armed star:

Hexagonal fractar stage #1


Hexagonal fractar #2


Hexagonal fractar #3


Hexagonal fractar #4


Hexagonal fractar #5


Hexagonal fractar #6


Hexagonal fractar (animated)


Hexagonal fractar (black-and-white)


Hexagonal fractar (bw) (animated)


And here’s what happens to the triangular fractar when the new lines are rotated by 60°:

Triangular fractar (60° rotation) #1


Triangular fractar (60°) #2


Triangular fractar (60°) #3


Triangular fractar (60°) #4


Triangular fractar (60°) #5


Triangular fractar (60°) #6


Triangular fractar (60°) #7


Triangular fractar (60°) #8


Triangular fractar (60°) #9


Triangular fractar (60°) (animated)


Triangular fractar (60°) (black-and-white)


Triangular fractar (60°) (bw) (animated)


Triangular fractar (60°) (no lines) (black-and-white)


A four-armed star yields a recognizable fractal when the rotation is 45°:

Square fractar (45°) #1


Square fractar (45°) #2


Square fractar (45°) #3


Square fractar (45°) #4


Square fractar (45°) #5


Square fractar (45°) #6


Square fractar (45°) #7


Square fractar (45°) #8


Square fractar (45°) (animated)


Square fractar (45°) (black-and-white)


Square fractar (45°) (bw) (animated)


Without the lines, the final fractar looks like the plan of a castle:

Square fractar (45°) (bw) (no lines)


And here’s a five-armed star with new lines rotated at 36°:

Pentagonal fractar (36°) #1


Pentagonal fractar (36°) #2


Pentagonal fractar (36°) #3


Pentagonal fractar (36°) #4


Pentagonal fractar (36°) #5


Pentagonal fractar (36°) #6


Pentagonal fractar (36°) #7


Pentagonal fractar (36°) (animated)


Again, the final fractar without lines looks like the plan of a castle:

Pentagonal fractar (36°) (no lines) (black-and-white)


Finally, here’s a six-armed star with new lines rotated at 30°:

Hexagonal fractar (30°) #1


Hexagonal fractar (30°) #2


Hexagonal fractar (30°) #3


Hexagonal fractar (30°) #4


Hexagonal fractar (30°) #5


Hexagonal fractar (30°) #6


Hexagonal fractar (30°) (animated)


And the hexagonal castle plan:

Hexagonal fractar (30°) (black-and-white) (no lines)