Fractal + Star = Fractar

Here’s a three-armed star made with three lines radiating at intervals of 120°:

Triangular fractal stage #1


At the end of each of the three lines, add three more lines at half the length:

Triangular fractal #2


And continue like this:

Triangular fractal #3


Triangular fractal #4


Triangular fractal #5


Triangular fractal #6


Triangular fractal #7


Triangular fractal #8


Triangular fractal #9


Triangular fractal #10


Triangular fractal (animated)


Because this fractal is created from a series of star, you could call it a fractar. Here’s a black-and-white version:

Triangular fractar (black-and-white)


Triangular fractar (black-and-white) (animated)
(Open in a new window for larger version if the image seems distorted)


A four-armed star doesn’t yield an easily recognizable fractal in a similar way, so let’s try a five-armed star:

Pentagonal fractar stage #1


Pentagonal fractar #2


Pentagonal fractar #3


Pentagonal fractar #4


Pentagonal fractar #5


Pentagonal fractar #6


Pentagonal fractar #7


Pentagonal fractar (animated)


Pentagonal fractar (black-and-white)


Pentagonal fractar (bw) (animated)


And here’s a six-armed star:

Hexagonal fractar stage #1


Hexagonal fractar #2


Hexagonal fractar #3


Hexagonal fractar #4


Hexagonal fractar #5


Hexagonal fractar #6


Hexagonal fractar (animated)


Hexagonal fractar (black-and-white)


Hexagonal fractar (bw) (animated)


And here’s what happens to the triangular fractar when the new lines are rotated by 60°:

Triangular fractar (60° rotation) #1


Triangular fractar (60°) #2


Triangular fractar (60°) #3


Triangular fractar (60°) #4


Triangular fractar (60°) #5


Triangular fractar (60°) #6


Triangular fractar (60°) #7


Triangular fractar (60°) #8


Triangular fractar (60°) #9


Triangular fractar (60°) (animated)


Triangular fractar (60°) (black-and-white)


Triangular fractar (60°) (bw) (animated)


Triangular fractar (60°) (no lines) (black-and-white)


A four-armed star yields a recognizable fractal when the rotation is 45°:

Square fractar (45°) #1


Square fractar (45°) #2


Square fractar (45°) #3


Square fractar (45°) #4


Square fractar (45°) #5


Square fractar (45°) #6


Square fractar (45°) #7


Square fractar (45°) #8


Square fractar (45°) (animated)


Square fractar (45°) (black-and-white)


Square fractar (45°) (bw) (animated)


Without the lines, the final fractar looks like the plan of a castle:

Square fractar (45°) (bw) (no lines)


And here’s a five-armed star with new lines rotated at 36°:

Pentagonal fractar (36°) #1


Pentagonal fractar (36°) #2


Pentagonal fractar (36°) #3


Pentagonal fractar (36°) #4


Pentagonal fractar (36°) #5


Pentagonal fractar (36°) #6


Pentagonal fractar (36°) #7


Pentagonal fractar (36°) (animated)


Again, the final fractar without lines looks like the plan of a castle:

Pentagonal fractar (36°) (no lines) (black-and-white)


Finally, here’s a six-armed star with new lines rotated at 30°:

Hexagonal fractar (30°) #1


Hexagonal fractar (30°) #2


Hexagonal fractar (30°) #3


Hexagonal fractar (30°) #4


Hexagonal fractar (30°) #5


Hexagonal fractar (30°) #6


Hexagonal fractar (30°) (animated)


And the hexagonal castle plan:

Hexagonal fractar (30°) (black-and-white) (no lines)


Tri Again

All roads lead to Rome, so the old saying goes. But you may get your feet wet, so try the Sierpiński triangle instead. This fractal is named after the Polish mathematician Wacław Sierpiński (1882-1969) and quite a few roads lead there too. You can create it by deleting, jumping or bending, inter alia. Here is method #1:

Sierpinski middle delete

Divide an equilateral triangle into four, remove the central triangle, do the same to the new triangles.

Here is method #2:

Sierpinski random jump

Pick a corner at random, jump half-way towards it, mark the spot, repeat.

And here is method #3:

Sierpinski arrowhead

Bend a straight line into a hump consisting of three straight lines, then repeat with each new line.

Each method can be varied to create new fractals. Method #3, which is also known as the arrowhead fractal, depends on the orientation of the additional humps, as you can see from the animated gif above. There are eight, or 2 x 2 x 2, ways of varying these three orientations, so eight fractals can be produced if the same combination of orientations is kept at each stage, like this (some are mirror images — if an animated gif doesn’t work, please open it in a new window):

arrowhead1

arrowhead2

arrowhead3

arrowhead4

arrowhead5

If different combinations are allowed at different stages, the number of different fractals gets much bigger:

• Continuing viewing Tri Again.