# First Whirled Warp

Imagine two points moving clockwise around the circumference of a circle. Find the midpoint between the two points when one point is moving twice as fast as the other. The midpoint will trace this shape:

Midpoint of two points moving around circle at speeds s and s*2

(n.b. to make things easier to see, the red circle shown here and elsewhere is slightly larger than the virtual circle used to calculate the midpoints)

Now suppose that one point is moving anticlockwise. The midpoint will now trace this shape:

Midpoint for s, -s*2

Now try three points, two moving at the same speed and one moving twice as fast:

Midpoint for s, s, s*2

When the point moving twice as fast is moving anticlockwise, this shape appears:

Midpoint for s, s, -s*2

Here are more of these midpoint-shapes:

Midpoint for s, s*3

Midpoint for s, -s*3

Midpoint for s*2, s*3

Midpoint for s, -s, s*2

Midpoint for s, s*2, -s*2

Midpoint for s, s*2, s*2

Midpoint for s, -s*3, -s*5

Midpoint for s, s*2, s*3

Midpoint for s, s*2, -s*3

Midpoint for s, -s*3, s*5

Midpoint for s, s*3, s*5

Midpoint for s, s, s, s*3

Midpoint for s, s, s, -s*3

Midpoint for s, s, -s, s*3

Midpoint for s, s, -s, -s*3

But what about points moving around the perimeter of a polygon? Here are the midpoints of two points moving clockwise around the perimeter of a square, with one point moving twice as fast as the other:

Midpoint for square with s, s*2

And when one point moves anticlockwise:

Midpoint for square with s, -s*2

If you adjust the midpoints so that the square fills a circle, they look like this:

Midpoint for square with s, s*2, with square adjusted to fill circle

When the red circle is removed, the midpoint-shape is easier to see:

Midpoint for square with s, s*2, circ-adjusted

Here are more midpoint-shapes from squares:

Midpoint for s, s*3

Midpoint for s, -s*3

Midpoint for s, s*4

And some more circularly adjusted midpoint-shapes from squares:

Finally (for now), let’s look at triangles. If three points are moving clockwise around the perimeter of a triangle, one moving four times as fast as the other two, the midpoint traces this shape:

Midpoint for triangle with s, s, s*4

Now try one of the points moving anticlockwise:

Midpoint for s, s, -s*4

Midpoint for s, -s, s*4

If you adjust the midpoints so that the triangular space fills a circle, they look like this:

Midpoint for s, s, s*4, with triangular space adjusted to fill circle

Midpoint for s, -s, s*4, circ-adjusted

Midpoint for s, s, -s*4, circ-adjusted

There are lots more (infinitely more!) midpoint-shapes to see, so watch this (circularly adjusted) space.

We Can Circ It Out — more on converting polygons into circles

# We Can Circ It Out

It’s a pretty little problem to convert this triangular fractal…

Sierpiński triangle (Wikipedia)

…into its circular equivalent:

Sierpiński triangle as circle

Sierpiński triangle to circle (animated)

But once you’ve circ’d it out, as it were, you can easily adapt the technique to fractals based on other polygons:

T-square fractal (Wikipedia)

T-square fractal as circle

T-square fractal to circle (animated)

Elsewhere other-accessible…

Dilating the Delta — more on converting polygonic fractals to circles…

# Fylfy Fractals

An equilateral triangle is a rep-tile, because it can be tiled completely with smaller copies of itself. Here it is as a rep-4 rep-tile, tiled with four smaller copies of itself:

Equilateral triangle as rep-4 rep-tile

If you divide and discard one of the sub-copies, then carry on dividing-and-discarding with the sub-copies and sub-sub-copies and sub-sub-sub-copies, you get the fractal seen below. Alas, it’s not a very attractive or interesting fractal:

Stage #2

Stage #3

Stage #4

Stage #5

Stage #6

Stage #7

Stage #8

Stage #9

You can create more attractive and interesting fractals by rotating the sub-triangles clockwise or anticlockwise. Here are some examples:

Now try dividing a square into four right triangles, then turning each of the four triangles into a divide-and-discard fractal. The resulting four-fractal shape is variously called a swastika, a gammadion, a cross cramponnée, a Hakenkreuz and a fylfot. I’m calling it a fylfy fractal:

Divide-and-discard fractals in the four triangles of a divided square stage #1

Fylfy fractal #2

Fylfy fractal #3

Fylfy fractal #4

Fylfy fractal #5

Fylfy fractal #6

Fylfy fractal #7

Fylfy fractal #8

Fylfy fractal (animated)

Finally, you can adjust the fylfy fractals so that each point in the square becomes the equivalent point in a circle:

# Game of Throwns

In “Scaffscapes”, I looked at these three fractals and described how they were in a sense the same fractal, even though they looked very different:

Fractal #1

Fractal #2

Fractal #3

But even if they are all the same in some mathematical sense, their different appearances matter in an aesthetic sense. Fractal #1 is unattractive and seems uninteresting:

Fractal #1, unattractive, uninteresting and unnamed

Fractal #3 is attractive and interesting. That’s part of why mathematicians have given it a name, the T-square fractal:

Fractal #3 — the T-square fractal

But fractal #2, although it’s attractive and interesting, doesn’t have a name. It reminds me of a ninja throwing-star or shuriken, so I’ve decided to call it the throwing-star fractal or ninja-star fractal:

Fractal #2, the throwing-star fractal

A ninja throwing-star or shuriken

This is one way to construct a throwing-star fractal:

Throwing-star fractal, stage 1

Throwing-star fractal, #2

Throwing-star fractal, #3

Throwing-star fractal, #4

Throwing-star fractal, #5

Throwing-star fractal, #6

Throwing-star fractal, #7

Throwing-star fractal, #8

Throwing-star fractal, #9

Throwing-star fractal, #10

Throwing-star fractal, #11

Throwing-star fractal (animated)

But there’s another way to construct a throwing-star fractal. You use what’s called the chaos game. To understand the commonest form of the chaos game, imagine a ninja inside an equilateral triangle throwing a shuriken again and again halfway towards a randomly chosen vertex of the triangle. If you mark each point where the shuriken lands, you eventually get a fractal called the Sierpiński triangle:

Chaos game with triangle stage 1

Chaos triangle #2

Chaos triangle #3

Chaos triangle #4

Chaos triangle #5

Chaos triangle #6

Chaos triangle #7

Chaos triangle (animated)

When you try the chaos game with a square, with the ninja throwing the shuriken again and again halfway towards a randomly chosen vertex, you don’t get a fractal. The interior of the square just fills more or less evenly with points:

Chaos game with square, stage 1

Chaos square #2

Chaos square #3

Chaos square #4

Chaos square #5

Chaos square #6

Chaos square (anim)

But suppose you restrict the ninja’s throws in some way. If he can’t throw twice or more in a row towards the same vertex, you get a familiar fractal:

Chaos game with square, ban on throwing towards same vertex, stage 1

Chaos square, ban = v+0, #2

Chaos square, ban = v+0, #3

Chaos square, ban = v+0, #4

Chaos square, ban = v+0, #5

Chaos square, ban = v+0, #6

Chaos square, ban = v+0 (anim)

But what if the ninja can’t throw the shuriken towards the vertex one place anti-clockwise of the vertex he’s just thrown it towards? Then you get another familiar fractal — the throwing-star fractal:

Chaos square, ban = v+1, stage 1

Chaos square, ban = v+1, #2

Chaos square, ban = v+1, #3

Chaos square, ban = v+1, #4

Chaos square, ban = v+1, #5

Game of Throwns — throwing-star fractal from chaos game (static)

Game of Throwns — throwing-star fractal from chaos game (anim)

And what if the ninja can’t throw towards the vertex two places anti-clockwise (or two places clockwise) of the vertex he’s just thrown the shuriken towards? Then you get a third familiar fractal — the T-square fractal:

Chaos square, ban = v+2, stage 1

Chaos square, ban = v+2, #2

Chaos square, ban = v+2, #3

Chaos square, ban = v+2, #4

Chaos square, ban = v+2, #5

T-square fractal from chaos game (static)

T-square fractal from chaos game (anim)

Finally, what if the ninja can’t throw towards the vertex three places anti-clockwise, or one place clockwise, of the vertex he’s just thrown the shuriken towards? If you can guess what happens, your mathematical intuition is much better than mine.

Post-Performative Post-Scriptum

I am not now and never have been a fan of George R.R. Martin. He may be a good author but I’ve always suspected otherwise, so I’ve never read any of his books or seen any of the TV adaptations.

# Scaffscapes

A fractal is a shape that contains copies of itself on smaller and smaller scales. You can find fractals everywhere in nature. Part of a fern looks like the fern as a whole:

Fern as fractal (source)

Part of a tree looks like the tree as a whole:

Tree as fractal (source)

Part of a landscape looks like the landscape as a whole:

Landscape as fractal (source)

You can also create fractals for yourself. Here are three that I’ve constructed:

Fractal #1

Fractal #2

Fractal #3 — the T-square fractal

The three fractals look very different and, in one sense, that’s exactly what they are. But in another sense, they’re the same fractal. Each can morph into the other two:

Fractal #1 → fractal #2 → fractal #3 (animated)

Here are two more fractals taken en route from fractal #2 to fractal #3, as it were:

Fractal #4

Fractal #5

To understand how the fractals belong together, you have to see what might be called the scaffolding. The construction of fractal #3 is the easiest to understand. First you put up the scaffolding, then you take it away and leave the final fractal:

Fractal #3, scaffolding stage 1

Fractal #3, stage 2

Fractal #3, stage 3

Fractal #3, stage 4

Fractal #3, stage 5

Fractal #3, stage 6

Fractal #3, stage 7

Fractal #3, stage 8

Fractal #3, stage 9

Fractal #3, stage 10

Fractal #3 (scaffolding removed)

Construction of fractal #3 (animated)

Now here’s the construction of fractal #1:

Fractal #1, stage 1

Fractal #1, stage 2

Fractal #1, stage 3

Construction of fractal #1 (animated)

Fractal #1 (static)

And the constructions of fractals #2, #4 and #5:

Fractal #2, stage 1

Fractal #2, stage 2

Fractal #2, stage 3

Fractal #2 (animated)

Fractal #2 (static)

Fractal #4, stage 1

Fractal #4, stage 2

Fractal #4, stage 3

Fractal #4 (animated)

Fractal #4 (static)

Fractal #5, stage 1

Fractal #5, stage 2

Fractal #5, stage 3

Fractal #5 (animated)

Fractal #5

# Middlemath

Suppose you start at the middle of a triangle, then map all possible ways you can jump eight times half-way towards one or another of the vertices of the triangle. At the end of the eight jumps, you mark your final position with a dot. You could jump eight times towards the same vertex, or once towards vertex 1, once towards vertex 2, and once again towards vertex 1. And so on. If you do this, the record of your jumps looks something like this:

The shape is a fractal called the Sierpiński triangle. But if you try the same thing with a square — map all possible jumping-routes you can follow towards one or another of the four vertices — you simply fill the interior of the square. There’s no interesting fractal:

So you need a plan with a ban. Try mapping all possible routes where you can’t jump towards the same vertex twice in a row. And you get this:

Ban on jumping towards same vertex twice in a row, v(t) ≠ v(t-1)

If you call the current vertex v(t) and the previous vertex v(t-1), the ban says that v(t) ≠ v(t-1). Now suppose you can’t jump towards the vertex one place clockwise of the previous vertex. Now the ban is v(t)-1 ≠ v(t-1) or v(t) ≠ v(t-1)+1 and this fractal appears:

v(t) ≠ v(t-1)+1

And here’s a ban on jumping towards the vertex two places clockwise (or counterclockwise) of the vertex you’ve just jumped towards:

v(t) ≠ v(t-1)+2

And finally the ban on jumping towards the vertex three places clockwise (or one place counterclockwise) of the vertex you’ve just jumped towards:

v(t) ≠ v(t-1)+3 (a mirror-image of v(t) ≠ v(t-1)+1, as above)

Now suppose you introduce a new point to jump towards at the middle of the square. You can create more fractals, but you have to adjust the kind of ban you use. The central point can’t be included in the ban or the fractal will be asymmetrical. So you continue taking account of the vertices, but if the previous jump was towards the middle, you ignore that jump. At least, that’s what I intended, but I wonder whether my program works right. Anyway, here are some of the fractals that it produces:

v(t) ≠ v(t-1) with central point (wcp)

v(t) ≠ v(t-1)+1, wcp

v(t) ≠ v(t-1)+2, wcp

And here are some bans taking account of both the previous vertex and the pre-previous vertex:

v(t) ≠ v(t-1) & v(t) ≠ v(t-2), wcp

v(t) ≠ v(t-1) & v(t-2)+1, wcp

v(t) ≠ v(t-1)+2 & v(t-2), wcp

v(t) ≠ v(t-1) & v(t-2)+1, wcp

v(t) ≠ v(t-1)+1 & v(t-2)+1, wcp

v(t) ≠ v(t-1)+2 & v(t-2)+1, wcp

v(t) ≠ v(t-1)+3 & v(t-2)+1, wcp

v(t) ≠ v(t-1) & v(t-2)+2, wcp

v(t) ≠ v(t-1)+1 & v(t-2)+2, wcp

v(t) ≠ v(t-1)+2 & v(t-2)+2, wcp

Now look at pentagons. They behave more like triangles than squares when you map all possible jumping-routes towards one or another of the five vertices. That is, a fractal appears:

All possible jumping-routes towards the vertices of a pentagon

But the pentagonal-jump fractals get more interesting when you introduce jump-bans:

v(t) ≠ v(t-1)

v(t) ≠ v(t-1)+1

v(t) ≠ v(t-1)+2

v(t) ≠ v(t-1) & v(t-2)

v(t) ≠ v(t-1)+2 & v(t-2)

v(t) ≠ v(t-1)+1 & v(t-2)+1

v(t) ≠ v(t-1)+3 & v(t-2)+1

v(t) ≠ v(t-1)+1 & v(t-2)+2

v(t) ≠ v(t-1)+2 & v(t-2)+2

v(t) ≠ v(t-1)+3 & v(t-2)+2

Finally, here are some pentagonal-jump fractals using a central point:

Post-Performative Post-Scriptum

I’m not sure if I’ve got the order of some bans right above. For example, should v(t) ≠ v(t-1)+1 & v(t-2)+2 really be v(t) ≠ v(t-1)+2 & v(t-2)+1? I don’t know and I’m not going to check. But the idea of jumping-point bans is there and that’s all you need if you want to experiment with these fractal methods for yourself.

# Triangular Squares

The numbers that are both square and triangular are beautifully related to the best approximations to √2:

 Number Square Root Factors of root 1 1 1 36 6 2 * 3 1225 35 5 * 7 41616 204 12 * 17

and so on.

In each case the factors of the root are the numerator and denominator of the next approximation to √2. — David Wells, The Penguin Dictionary of Curious and Interesting Mathematics (1986), entry for “36”.

Elsewhere other-accessible

A001110 — Square triangular numbers: numbers that are both triangular and square

# Square’s Flair

If you want to turn banality into beauty, start here with three staid and static squares:

Stage #1

Now replace each red and yellow square with two new red and yellow squares orientated in the same way to the original square:

Stage #2

And repeat:

Stage #3

Stage #4

Stage #5

Stage #6

Stage #7

Stage #8

Stage #9

Stage #10

Stage #11

Stage #12

Stage #13

Stage #14

Stage #15

Stage #16

Stage #17

Stage #18

And you arrive in the end at a fractal called a dragon curve:

Dragon curve

Dragon curve (animated)

Elsewhere other-engageable

Curvous Energy — an introduction to dragon curves
All Posts — about dragon curves

# Bent Pent

This is a beautiful and interesting shape, reminiscent of a piece of jewellery:

Pentagons in a ring

I came across it in this tricky little word-puzzle:

Word puzzle using pentagon-ring

Here’s a printable version of the puzzle:

Printable puzzle

Let’s try placing some other regular polygons with s sides around regular polygons with s*2 sides:

Hexagonal ring of triangles

Octagonal ring of squares

Decagonal ring of pentagons

Dodecagonal ring of hexagons

Only regular pentagons fit perfectly, edge-to-edge, around a regular decagon. But all these polygonal-rings can be used to create interesting and beautiful fractals, as I hope to show in a future post.

# Think Inc #2

In a pre-previous post called “Think Inc”, I looked at the fractals created by a point first jumping halfway towards the vertex of a square, then using a set of increments to decide which vertex to jump towards next. For example, if the inc-set was [0, 1, 3], the point would jump next towards the same vertex, v[i]+0, or the vertex immediately clockwise, v[i]+1, or the vertex immediately anti-clockwise, v[i]+3. And it would trace all possible routes using that inc-set. Then I added refinements to the process like giving the point extra jumping-targets half-way along each side.

Here are some more variations on the inc-set theme using two and three extra jumping-targets along each side of the square. First of all, try two extra jumping-targets along each side and a set of three increments:

inc = 0, 1, 6

inc = 0, 2, 6

inc = 0, 2, 8

inc = 0, 3, 6

inc = 0, 3, 9

inc = 0, 4, 8

inc = 0, 5, 6

inc = 0, 5, 7

inc = 1, 6, 11

inc = 2, 6, 10

inc = 3, 6, 9

Now try two extra jumping-targets along each side and a set of four increments:

inc = 0, 1, 6, 11

inc = 0, 2, 8, 10

inc = 0, 3, 7, 9

inc = 0, 4, 8, 10

inc = 0, 5, 6, 7

inc = 0, 5, 7, 8

inc = 1, 6, 7, 9

inc = 1, 4, 6, 11

inc = 1, 5, 7, 11

inc = 2, 4, 8, 10

inc = 3, 5, 7, 9

And finally, three extra jumping-targets along each side and a set of three increments:

inc = 0, 3, 13

inc = 0, 4, 8

inc = 0, 4, 12

inc = 0, 5, 11

inc = 0, 6, 9

inc = 0, 7, 9

Previously Pre-Posted

Think Inc — an earlier look at inc-set fractals