Plow-Pair

Futoshiki is fun. It’s a number-puzzle where you use logic to re-create a 5×5 square in which every row and column contains the numbers 1 to 5. At first, most or all of the numbers are missing. You work out what those missing numbers are by using the inequality signs scattered over the futoshiki. Here’s an example:


There are no numbers at all in the futoshiki, so where do you start? Well, first let’s establish some vocabulary for discussing futoshiki. If we label squares by row and column, you can say that square (4,5), just above the lower righthand corner, dominates square (4,4), because (4,5) is on the dominant side of the inequality sign between the two squares (futōshiki, 不等式, means “inequality” in Japanese). Whatever individual number is in (4,5) must be greater than whatever individual number is in (4,4).

Conversely, you can say that (4,4) is dominated by (4,5). But that’s not the end of it: (4,4) is dominated by (4,5) but dominates (3,4), which in its turn dominates (2,4). In other words, there’s a chain of dominations. In this case, it’s a 4-chain, that is, it’s four squares long: (4,5) > (4,4) > (3,4) > (2,4), where (4,5) is the start-square and (2,4) is the end-square. Now, because 5 is the highest number in a 5×5 futoshiki, it can’t be in any square dominated by another square. And because 1 is always the lowest number in a futoshiki, it can’t be in any square that dominates another square. By extending that logic, you’ll see that 4 can’t be in the end-square of a 3-chain, (a,b) > (c,d) > (e,f), and 2 can’t be in the start-square of a 3-chain. Nor can 3 be in the start-square or end-square of a 4-chain.

Using all that logic, you can start excluding numbers from certain squares and working out sets of possible numbers in each square, like this:

[whoops: square contains errors that need to be corrected!]


Now look at column 1 and at row 4:


In column 1, the number 5 appears only once among the possibles, in (1,1); in row 4, the number 1 appears only once among the possibles, in (4,1). And if a number appears in only one square of a row or column, you know that it must be the number filling that particular square. So 5 must be the number filling (1,1) and 1 must be the number filling (4,1). And once a square is filled by a particular number, you can remove it from the sets of possibles filling the other squares of the row and column. I call this sweeping the row and column. Voilà:


Now that the 5 in (1,1) and the 1 in (4,1) have swept all other occurrences of 5 and 1 from the sets of possibles in column 1 and row 4, you can apply the only-once rule again. 2 appears only once in row 4 and 5 appears only once in column 4:


So you’ve got two more filled squares:


Now you can apply a more complex piece of logic. Look at the sets of possibles in row 3 and you’ll see that the set {2,3} occurs twice, in square (3,1) and square (3,4):


What does this double-occurrence of {2,3} mean? It means that if 2 is in fact the number filling (3,1), then 3 must be the number filling (3,4). And vice versa. Therefore 2 and 3 can occur only in those two squares and the two numbers can be excluded or swept from the sets of possibles filling the other squares in that row. You could call {2,3} a plow-pair or plow-pare, because it’s a pair that pares 2 and 3 from the other squares. So we have a pair-rule: if the same pair of possibles, {a,b}, appears in two squares in a row or column, then both a and b can be swept from the three other squares in that row or column. Using {2,3}, let’s apply the pair-rule to the futoshiki and run the plow-pare over row 3:


Now the pair-rule applies again, because {4,5} occurs twice in column 5:


And once the plow-pare has swept 4 and 5 from the other three squares in column 5, you’ll see that 3 is the only number left in square (1,5). Therefore 3 must fill (1,5):


Now 3 can be swept from the rest of row 1 and column 5:


And the pair-rule applies again, because {1,2} occurs twice in row 2:


Once 2 is swept from {2,3,4} in square (2,1) to leave {3,4}, 3 must be excluded from square (2,2), because (2,2) dominates (2,1) and 3 can’t be greater than itself. And once 3 is excluded from (2,2), it occurs only once in column 2:


Therefore 3 must fill (5,2), which dominates (5,1) and its set of possibles {2,3,4}. Because 3 can’t be greater than 4 or itself, 2 is the only possible filler for (5,1) and only 3 is left when 2 is swept from (3,1):


And here are the remaining steps in completing the futoshiki:

The complete futoshiki


Animation of the steps required to complete the futoshiki


Afterword

The pair-rule can be extended to a triplet-rule and quadruplet-rule:

• If three numbers {a,b,c} can occur in only three squares of a row or column, then a, b and c can be swept from the two remaining squares of the row or column.
• If four numbers {a,b,c,d} can occur in only four squares of a row or column, then a, b, c and d can be swept from the one remaining square of the row or column (therefore the number e must fill that remaining square).

But you won’t be able to apply the triplet-rule and quadruplet-rule as often as the pair-rule. Note also that the triplet-rule doesn’t work when {a,b,c} can occur in only two squares of a row or column. An n-rule applies only when the same n numbers of a set occur in n squares of a row or column. And n must be less than 5.


Post-Performative Post-Scriptum

Domination. Exclusion. Inequality. — an earlier look at futoshiki

Magiciprocal


A021023 Decimal expansion of 1/19.

0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8 [...] The magic square that uses the decimals of 1/19 is fully magic. — A021023 at the Online Encyclopedia of Integer Sequences

Bee Here Now

Russian Bee Stamps 2005


British Bee Stamps 2015


Elsewhere other-accessible

Royal Mail bee stamps designed to raise awareness of species

Wails from the Crypt

From the depths of the crypt at St Giles
Came a scream that resounded for miles…
Said the vicar: “Good gracious!
Has Father Ignatius
Forgotten the Bishop has piles?”

(Anonymous)


Elsewhere other-accessible…

Doc Proc — a review of Dr Miriam B. Stimbers’ Botty: An Unnatural History of the Backside (2014)

Delta Skelta

“When I get to the bottom I go back to the top of the slide,
Where I stop and I turn and I go for a ride
Till I get to the bottom and I see you again.” — The Beatles, “Helter Skelter” (1968)


First stage of fractal #1











Animated fractal #1


First stage of fractal #2













Animated fractal #2

See-Saw Jaw

From Sierpiński triangle to T-square to Mandibles (and back again) (animated)
(Open in new window if distorted)


Elsewhere other-accessible…

Mandibular Metamorphosis — explaining the animation above
Agnathous Analysis — more on the Sierpiński triangle and T-square fractal

Genoa Ultramarina

«Il mare è la civiltà», disse [Franco Scoglio] una volta, «il sentimento, la passione, le tempeste, ma l’amore, gli sbarchi, le partenze, il mare è tutto. La follia va di pari passo con il mare». — Ultrà. Il volto nascosto delle tifoserie di calcio in Italia, Tobias Jones (2020)

• “The sea is civilization,” [Franco Scoglio] said once, “sentiment, passion, storms, love, landings, leavings, the sea is everything… madness walks with the sea.” — Ultra: The Underworld of Italian Football, Tobias Jones (2019)


Post-Performative Post-Scriptum

I’m not sure if the Italian is the original Italian or an Italian translation of Jones’s English translation of the original Italian. But it seems to be the former.


Elsewhere other-accessible…

Franco Scoglio en italiano
Franco Scoglio in English

Down in the Bassment

Cover of Damned to Earth’s self-titled debut


I like the cover and the music.


Previously Pre-Posted…

Museek — in which I don’t like the cover but do like the music
A Little Light Night Music — in which I don’t like the music but do like the cover

ConstKunst

John Constable’s Salisbury Cathedral from the Bishop’s Grounds (1825, Frick Collection)


Elsewhere other-engageable…

• Discussion of Salisbury Cathedral from the Bishop’s Grounds (1823) at Wikipedia

Tri Num Sum

The Sum of ten consecutive Triangular Numbers:

Starting with T0 = 0, in base 10,

The sum of the first 10 triangular numbers from T0 to T9 = 165
The sum of the next 10 triangular numbers from T10 to T19 = 1165
The sum of the next 10 triangular numbers from T20 to T29 = 3165
The sum of the next 10 triangular numbers from T30 to T39 = 6165
The sum of the next 10 triangular numbers from T40 to T49 = 10165
The sum of the next 10 triangular numbers from T50 to T59 = 15165

and so on.

The same pattern is evident in other bases [when summing T0 to Tbase-1 and so on].


• As submitted by Julian Beauchamp, 9v19, to Shyam Sunder Gupta’s “Fascinating Triangular Numbers”.