Back to Drac’

draconic, adj. /drəˈkɒnɪk/ pertaining to, or of the nature of, a dragon. [Latin draco, -ōnem, < Greek δράκων dragon] — The Oxford English Dictionary

In Curvous Energy, I looked at the strange, beautiful and complex fractal known as the dragon curve and showed how it can be created from a staid and sedentary square:

A dragon curve


Here are the stages whereby the dragon curve is created from a square. Note how each square at one stage generates a pair of further squares at the next stage:

Dragon curve from squares #1


Dragon curve from squares #2


Dragon curve from squares #3


Dragon curve from squares #4


Dragon curve from squares #5


Dragon curve from squares #6


Dragon curve from squares #7


Dragon curve from squares #8


Dragon curve from squares #9


Dragon curve from squares #10


Dragon curve from squares #11


Dragon curve from squares #12


Dragon curve from squares #13


Dragon curve from squares #14


Dragon curve from squares (animated)


The construction is very easy and there’s no tricky trigonometry, because you can use the vertices and sides of each old square to generate the vertices of the two new squares. But what happens if you use lines rather than squares to generate the dragon curve? You’ll discover that less is more:

Dragon curve from lines #1


Dragon curve from lines #2


Dragon curve from lines #3


Dragon curve from lines #4


Dragon curve from lines #5


Each line at one stage generates a pair of further lines at the next stage, but there’s no simple way to use the original line to generate the new ones. You have to use trigonometry and set the new lines at 45° to the old one. You also have to shrink the new lines by a fixed amount, 1/√2 = 0·70710678118654752… Here are further stages:

Dragon curve from lines #6


Dragon curve from lines #7


Dragon curve from lines #8


Dragon curve from lines #9


Dragon curve from lines #10


Dragon curve from lines #11


Dragon curve from lines #12


Dragon curve from lines #13


Dragon curve from lines #14


Dragon curve from lines (animated)


But once you have a program that can adjust the new lines, you can experiment with new angles. Here’s a dragon curve in which one new line is at an angle of 10°, while the other remains at 45° (after which the full shape is rotated by 180° because it looks better that way):

Dragon curve 10° and 45°


Dragon curve 10° and 45° (animated)


Dragon curve 10° and 45° (coloured)


Here are more examples of dragon curves generated with one line at 45° and the other line at a different angle:

Dragon curve 65°


Dragon curve 65° (anim)


Dragon curve 65° (col)


Dragon curve 80°


Dragon curve 80° (anim)


Dragon curve 80° (col)


Dragon curve 135°


Dragon curve 135° (anim)


Dragon curve 250°


Dragon curve 250° (anim)


Dragon curve 250° (col)


Dragon curve 260°


Dragon curve 260° (anim)


Dragon curve 260° (col)


Dragon curve 340°


Dragon curve 340° (anim)


Dragon curve 340° (col)


Dragon curve 240° and 20°


Dragon curve 240° and 20° (anim)


Dragon curve 240° and 20° (col)


Dragon curve various angles (anim)


Previously pre-posted:

Curvous Energy — a first look at dragon curves

Rigging in the Trigging

Here’s a simple pattern of three triangles:

Three-Triangle Pattern


Now replace each triangle in the pattern with the same pattern at a smaller scale:

Replacing triangles


If you keep on doing this, you create what I’ll call a trigonal fractal (trigon is Greek for “triangle”):

Trigonal Fractal stage #3 (click for larger)


Trigonal Fractal stage #4


Trigonal Fractal stage #5


Trigonal Fractal #6


Trigonal Fractal #7


Trigonal Fractal #8


Trigonal Fractal (animated) (click for larger)


You can use the same pattern to create different fractals by rotating the replacement patterns in different ways. I call this “rigging the trigging” and here are some of the results:




You can also use a different seed-pattern to create the fractals:

Trigonal fractal (animated)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)



Trigonal fractal (anim)


Note: The title of this incendiary intervention is of course a paronomasia on the song “Frigging in the Rigging”, also known as “Good Ship Venus” and performed by the Sex Pistols on The Great Rock ’n’ Roll Swindle (1979).

Bat out of L

Pre-previously on Overlord-in-terms-of-the-Über-Feral, I’ve looked at intensively interrogated issues around the L-triomino, a shape created from three squares that can be divided into four copies of itself:

An L-triomino divided into four copies of itself


I’ve also interrogated issues around a shape that yields a bat-like fractal:

A fractal full of bats


Bat-fractal (animated)


Now, to end the year in spectacular fashion, I want to combine the two concepts pre-previously interrogated on Overlord-in-terms-of-the-Über-Feral (i.e., L-triominoes and bats). The L-triomino can also be divided into nine copies of itself:

An L-triomino divided into nine copies of itself


If three of these copies are discarded and each of the remaining six sub-copies is sub-sub-divided again and again, this is what happens:

Fractal stage 1


Fractal stage 2


Fractal #3


Fractal #4


Fractal #5


Fractal #6


Et voilà, another bat-like fractal:

L-triomino bat-fractal (static)


L-triomino bat-fractal (animated)


Elsewhere other-posted:

Tri-Way to L
Bats and Butterflies
Square Routes
Square Routes Revisited
Square Routes Re-Revisited
Square Routes Re-Re-Revisited

Tridentine Math

The Tridentine Mass is the Roman Rite Mass that appears in typical editions of the Roman Missal published from 1570 to 1962. — Tridentine Mass, Wikipedia

A 30°-60°-90° right triangle, with sides 1 : √3 : 2, can be divided into three identical copies of itself:

30°-60°-90° Right Triangle — a rep-3 rep-tile…


And if it can be divided into three, it can be divided into nine:

…that is also a rep-9 rep-tile


Five of the sub-copies serve as the seed for an interesting fractal:

Fractal stage #1


Fractal stage #2


Fractal stage #3


Fractal #4


Fractal #5


Fractal #6


Fractal #6


Tridentine cross (animated)


Tridentine cross (static)


This is a different kind of rep-tile:

Noniamond trapezoid


But it yields the same fractal cross:

Fractal #1


Fractal #2


Fractal #3


Fractal #4


Fractal #5


Fractal #6


Tridentine cross (animated)


Tridentine cross (static)


Elsewhere other-available:

Holey Trimmetry — another fractal cross

Square Routes Re-Re-Revisited

This is an L-triomino, or shape created from three squares laid edge-to-edge:

When you divide each square like this…

You can create a fractal like this…

Stage #1


Stage #2


Stage #3


Stage #4


Stage #5


Stage #6


Stage #7


Stage #8


Stage #9


Stage #10


Animated fractal


Here are more fractals created from the triomino:

Animated


Static


Animated


Static


Animated


Static


And here is a different shape created from three squares:

And some fractals created from it:

Animated


Static


Animated


Static


Animated


Static


And a third shape created from three squares:

And some fractals created from it:

Animated


Static


Animated


Static


Animated


Static


Animated


Static


Animated


Static


Animated


Static


Animated


Static


Animated


Static


Previously pre-posted (please peruse):

Tri-Way to L
Square Routes
Square Routes Revisited
Square Routes Re-Revisited

Bats and Butterflies

I’ve used butterfly-images to create fractals. Now I’ve found a butterfly-image in a fractal. The exciting story begins with a triabolo, or shape created from three isoceles right triangles:


The triabolo is a rep-tile, or shape that can be divided into smaller copies of itself:


In this case, it’s a rep-9 rep-tile, divisible into nine smaller copies of itself. And each copy can be divided in turn:


But what happens when you sub-divide, then discard copies? A fractal happens:

Fractal crosses (animated)


Fractal crosses (static)


That’s a simple example; here is a more complex one:

Fractal butterflies #1


Fractal butterflies #2


Fractal butterflies #3


Fractal butterflies #4


Fractal butterflies #5


Fractal butterflies (animated)


Some of the gaps in the fractal look like butterflies (or maybe large moths). And each butterfly is escorted by four smaller butterflies. Another fractal has gaps that look like bats escorted by smaller bats:

Fractal bats (animated)

Fractal bats (static)


Elsewhere other-posted:

Gif Me Lepidoptera — fractals using butterflies
Holey Trimmetry — more fractal crosses

Holey Trimmetry

Symmetry arising from symmetry isn’t surprising. But what about symmetry arising from asymmetry? You can find both among the rep-tiles, which are geometrical shapes that can be completely replaced by smaller copies of themselves. A square is a symmetrical rep-tile. It can be replaced by nine smaller copies of itself:

Rep-9 Square

If you trim the copies so that only five are left, you have a symmetrical seed for a symmetrical fractal:

Fractal cross stage #1


Fractal cross #2


Fractal cross #3


Fractal cross #4


Fractal cross #5


Fractal cross #6


Fractal cross (animated)


Fractal cross (static)


If you trim the copies so that six are left, you have another symmetrical seed for a symmetrical fractal:

Fractal Hex-Ring #1


Fractal Hex-Ring #2


Fractal Hex-Ring #3


Fractal Hex-Ring #4


Fractal Hex-Ring #5


Fractal Hex-Ring #6


Fractal Hex-Ring (animated)


Fractal Hex-Ring (static)


Now here’s an asymmetrical rep-tile, a nonomino or shape created from nine squares joined edge-to-edge:

Nonomino


It can be divided into twelve smaller copies of itself, like this:

Rep-12 Nonomino (discovered by Erich Friedman)


If you trim the copies so that only five are left, you have an asymmetrical seed for a familiar symmetrical fractal:

Fractal cross stage #1


Fractal cross #2


Fractal cross #3


Fractal cross #4


Fractal cross #5


Fractal cross #6


Fractal cross (animated)


Fractal cross (static)


If you trim the copies so that six are left, you have an asymmetrical seed for another familiar symmetrical fractal:

Fractal Hex-Ring #1


Fractal Hex-Ring #2


Fractal Hex-Ring #3


Fractal Hex-Ring #4


Fractal Hex-Ring #5


Fractal Hex-Ring (animated)


Fractal Hex-Ring (static)


Elsewhere other-available:

Square Routes Re-Re-Visited

Square Routes Re-Revisited

This is a very simple fractal:


It has four orientations:


Any orientation can be turned into any other by a rotation of 90°, 180° or 270°, either clockwise or anticlockwise. If you mix orientations and rotations, you can create much more complex fractals. Here’s a selection of them:

Animated fractal

Static fractal


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Animated fractal

Static


Elsewhere other-posted:

Square Routes
Square Routes Revisited

Living Culler

When you replace a square with four smaller squares, each a quarter the size of the original, the smaller squares occupy the same area, because 4 * ¼ = 1. If you discard one sub-square, then divide each of the three remaining sub-squares into four sub-sub-square, discard one sub-sub-quare and repeat, you create fractals like those I looked at in Squaring and Paring. The fractals stay within a fixed boundary.

Square replaced with four smaller squares, each ¼th the size of the original


Animated fractal


Static fractal


This time I want to look at a slightly different process. Replace a square with nine smaller squares each a quarter the size of the original. Now the sub-squares occupy a larger area than the original, because 9 * ¼ = 2¼. If you discard — or cull — sub-squares and repeat, the resultant fractal grows beyond the original boundary. Indeed, sub-squares start to overlap, so you can use colours to represent how often a particular pixel has been covered with a square. Here is an example of this process in action:

Square replaced with nine smaller squares, each ¼th the size of the original


Animated fractal


Static fractal #1


Static fractal #2


Here are the individual stages of a more complex fractal that uses the second process:

Stage 1


Stage 2


Stage 3


Stage 4


Stage 5


Stage 6


Stage 7


Stage 8


Stage 9 (compare Fingering the Frigit and Performativizing the Polygonic)


Stage 10


Animated version


Static version #1


Static version #2


And here are some more of the fractals you can create in a similar way:


Static version #1

Static version #2


Static version #2

Static version #2

Static version #3





Various fractals in an animated gif


Squaring and Paring

Squares are often thought to be the most boring of all shapes. Yet every square holds a stunning secret – something that in legend prompted a mathematical cult to murder a traitor. If each side of a square is one unit long, how long is the square’s diagonal, that is, the line from one corner to the opposite corner?

By Pythagoras’ theorem, the answer is this:

• x^2 = 1^2 + 1^2
• x^2 = 2
• x = √2

But what is √2? Pythagoras and his followers thought that all numbers could be represented as either whole numbers or ratios of whole numbers. To their dismay, so it’s said, they discovered that they were wrong. √2 is an irrational number – it can’t be represented as a ratio. In modern notation, it’s an infinitely decimal that never repeats:

• √2 = 1·414213562373095048801688724209698…

A modern story, unattested in ancient records, says that the irrationality of √2 was a closely guarded secret in the Pythagorean cult. When Hippasus of Metapontum betrayed the secret, he was drowned at sea by enraged fellow cultists. Apocryphal or not, the story shows that squares aren’t so boring after all.

Nor are they boring when they’re caught in the fract. Divide one square into nine smaller copies of itself:


Discard three of the copies like this:

Stage 1
Retain squares 1, 2, 4, 6, 8, 9 (reading left-to-right, bottom-to-top)


Then do the same to each of the sub-squares:

Stage 1


And repeat:

Stage 3


Stage 4


Stage 5


Stage 6


The result is a fractal of endlessly subdividing contingent hexagons:

Animated vesion


Retain squares 1, 2, 4, 6, 8, 9 (reading left-to-right, bottom-to-top)


Here are a few more of the fractals you can create by squaring and paring:

Retain squares 1, 3, 5, 7, 9 (reading left-to-right, bottom-to-top)


Retain squares 2, 4, 5, 6, 8


Retain squares 1, 2, 4, 5, 6, 8, 9


Retain squares 1, 4, 6, 7, 10, 11, 13, 16


Retain squares 1, 3, 6, 7, 8, 9, 10, 11, 14, 16


Retain squares 2, 3, 5, 6, 8, 9, 11, 12, 14, 15


Retain squares 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25


Retain squares 1, 3, 7, 8, 11, 12, 14, 15, 18, 19, 23, 25


Retain squares 1, 5, 7, 8, 9, 12, 14, 17, 18, 19, 21, 25


Retain squares 2, 3, 4, 6, 7, 9, 10, 11, 15, 16, 17, 19, 20, 22, 23, 24


Retain squares 1, 2, 5, 6, 7, 9, 13, 17, 19, 20, 21, 24, 25


Previously pre-posted (please peruse):

M.i.P. Trip