In 10 Words: Im-Precise

I was looking at the best rational approximations for π when I was puzzled for a moment or two by the way the precision of digits didn’t always improve:

22/7 →
3.1428571... = 22/7 (precision = 3 digits)
3.1415926... = π
333/106 →
3.141509433... = 333/106 (pr=5)
3.141592653... = π
355/113 →
3.14159292035... = 355/113 (pr=7)
3.14159265358... = π
103993/33102 →
3.14159265301190... (pr=10)
3.14159265358979... = π
104348/33215 →
3.14159265392142... (pr=10)
3.14159265358979... = π
208341/66317 →
3.14159265346743... (pr=10)
3.14159265358979... = π
312689/99532 →
3.14159265361893... (pr=10)
3.14159265358979... = π
833719/265381 →
3.1415926535810777... (pr=12)
3.1415926535897932... = π
1146408/364913 →
3.141592653591403... (pr=11)
3.141592653589793... = π
4272943/1360120 →
3.14159265358938917... (pr=13)
3.14159265358979323... = π
5419351/1725033 →
3.14159265358981538... (pr=13)
3.14159265358979323... = π
80143857/25510582 →
3.1415926535897926593... (pr=15)
3.1415926535897932384... = π
165707065/52746197 →
3.14159265358979340254... (pr=16)
3.14159265358979323846... = π
245850922/78256779 →
3.14159265358979316028... (pr=16)
3.14159265358979323846... = π
411557987/131002976 →
3.141592653589793257826... (pr=17)
3.141592653589793238462... = π
1068966896/340262731 →
3.1415926535897932353925... (pr=18)
3.1415926535897932384626... = π
2549491779/811528438 →
3.1415926535897932390140... (pr=18)
3.1415926535897932384626... = π
6167950454/1963319607 →
3.14159265358979323838637... (pr=19)
3.14159265358979323846264... = π
14885392687/4738167652 →
3.141592653589793238493875... (pr=20)
3.141592653589793238462643... = π


But it was my precision that was wrong, of course. I wasn’t thinking about digits precisely enough. One approximation can be closer to π with fewer precise digits than another (e.g. 3.14201… is closer to π than 3.14101…). The same applies in binary, but there the precision tends to increase much more obviously:

22/7 →
3.1428571... = 22/7 in base 10 (pr=3)
3.1415926... = π in base 10
11.0010010010010... = 22/7 in base 2 (pr=9)
11.0010010000111... = π in base 2
333/106 →
3.141509433... = 333/106 in b10 (pr=5)
3.141592653... = π in b10
11.001001000011100111... = 333/106 in b2 (pr=14)
11.001001000011111101... = π in b2
355/113 →
3.14159292035... (pr=7)
3.14159265358... = π
11.00100100001111110110111100... = 355/113 in b2 (pr=22)
11.00100100001111110110101010... = π in b2
103993/33102 →
3.14159265301190... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100001100... (pr=29)
11.001001000011111101101010100010001... = π
104348/33215 →
3.14159265392142... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100010011111... (pr=32)
11.001001000011111101101010100010001000... = π
208341/66317 →
3.14159265346743... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100001111... (pr=29)
11.001001000011111101101010100010001... = π
312689/99532 →
3.14159265361893... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100010001010010... (pr=35)
11.001001000011111101101010100010001000010... = π
833719/265381 →
3.1415926535810777... (pr=12)
3.1415926535897932... = π
11.0010010000111111011010101000100001111... (pr=33)
11.0010010000111111011010101000100010000... = π
1146408/364913 →
3.141592653591403... (pr=11)
3.141592653589793... = π
11.0010010000111111011010101000100010000111011... (pr=39)
11.0010010000111111011010101000100010000101101... = π
4272943/1360120 →
3.14159265358938917... (pr=13)
3.14159265358979323... = π
11.001001000011111101101010100010001000010100110... (pr=41)
11.001001000011111101101010100010001000010110100... = π
5419351/1725033 →
3.14159265358981538... (pr=13)
3.14159265358979323... = π
11.0010010000111111011010101000100010000101101010010... (pr=45)
11.0010010000111111011010101000100010000101101000110... = π
80143857/25510582 →
3.1415926535897926593... (pr=15)
3.1415926535897932384... = π
11.0010010000111111011010101000100010000101101000101101... (pr=48)
11.0010010000111111011010101000100010000101101000110000... = π
165707065/52746197 →
3.14159265358979340254... (pr=16)
3.14159265358979323846... = π
11.00100100001111110110101010001000100001011010001100010100... (pr=52)
11.00100100001111110110101010001000100001011010001100001000... = π
245850922/78256779 →
3.14159265358979316028... (pr=16)
3.14159265358979323846... = π
11.001001000011111101101010100010001000010110100011000000110... (pr=53)
11.001001000011111101101010100010001000010110100011000010001... = π
411557987/131002976 →
3.141592653589793257826... (pr=17)
3.141592653589793238462... = π
11.00100100001111110110101010001000100001011010001100001010001... (pr=55)
11.00100100001111110110101010001000100001011010001100001000110... = π
1068966896/340262731 →
3.1415926535897932353925... (pr=18)
3.1415926535897932384626... = π
11.00100100001111110110101010001000100001011010001100001000100110... (pr=58)
11.00100100001111110110101010001000100001011010001100001000110100... = π
2549491779/811528438 →
3.1415926535897932390140... (pr=18)
3.1415926535897932384626... = π
11.00100100001111110110101010001000100001011010001100001000110111010... (pr=61)
11.00100100001111110110101010001000100001011010001100001000110100110... = π
6167950454/1963319607 →
3.14159265358979323838637... (pr=19)
3.14159265358979323846264... = π
11.0010010000111111011010101000100010000101101000110000100011010001101... (pr=63)
11.0010010000111111011010101000100010000101101000110000100011010011000... = π
14885392687/4738167652 →
3.141592653589793238493875... (pr=20)
3.141592653589793238462643... = π
11.001001000011111101101010100010001000010110100011000010001101001110100... (pr=65)
11.001001000011111101101010100010001000010110100011000010001101001100010... = π


Post-Performative Post-Scriptum…

The title of this terato-toxic post is a maximal mash-up (wow) of two well-known toxico-teratic tropes:

• “There are 10 kinds of people in the world. Those who understand binary and those who don’t.”
• Sam Goldwyn’s malapropism: “In two words: im-possible!”