The Glamor of Gamma

The factorial function, n!, is easy to understand. You simply take an integer and multiply it by all integers smaller than it (by convention, 0! = 1):

0! = 1
1! = 1
2! = 2 = 2*1
3! = 6 = 3*2*1
4! = 24 = 4*3*2*1
5! = 120 = 5*4*3*2*1
6! = 720 = 6*120 = 6*5!
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000

The gamma function, Γ(n), isn’t so easy to understand. It allows you to find the factorials of not just the integers, but everything between the integers, like fractions, square roots, and transcendental numbers like π. Don’t ask me how! And don’t ask me how you get this very beautiful and unexpected result:

Γ(1/2) = √π = 1.77245385091...

But a blog called Mathematical Enchantments can tell you more:

The Square Root of Pi


Post-Performative Post-Scriptum

glamour | glamor, n. Originally Scots, introduced into the literary language by Scott. A corrupt form of grammar n.; for the sense compare gramarye n. (and French grimoire ), and for the form glomery n. 1. Magic, enchantment, spell; esp. in the phrase to cast the glamour over one. 2. a. A magical or fictitious beauty attaching to any person or object; a delusive or alluring charm. b. Charm; attractiveness; physical allure, esp. feminine beauty; frequently attributive colloquial (originally U.S.). — Oxford English Dictionary

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.