The Hill to Power

89 is special because it’s a prime number, divisible by only itself and 1. It’s also a sum of powers in a special way: 89 = 8^1 + 9^2. In base ten, no other two-digit number is equal to its own ascending power-sum like that. But the same pattern appears in these three-digit numbers, as the powers climb with the digits:

135 = 1^1 + 3^2 + 5^3 = 1 + 9 + 125 = 135
175 = 1^1 + 7^2 + 5^3 = 1 + 49 + 125 = 175
518 = 5^1 + 1^2 + 8^3 = 5 + 1 + 512 = 518
598 = 5^1 + 9^2 + 8^3 = 5 + 81 + 512 = 598

And in these four-digit numbers:

1306 = 1^1 + 3^2 + 0^3 + 6^4 = 1 + 9 + 0 + 1296 = 1306
1676 = 1^1 + 6^2 + 7^3 + 6^4 = 1 + 36 + 343 + 1296 = 1676
2427 = 2^1 + 4^2 + 2^3 + 7^4 = 2 + 16 + 8 + 2401 = 2427

The pattern doesn’t apply to any five-digit number in base-10 and six-digit numbers supply only this near miss:

263248 + 1 = 2^1 + 6^2 + 3^3 + 2^4 + 4^5 + 8^6 = 2 + 36 + 27 + 16 + 1024 + 262144 = 263249

But the pattern re-appears among seven-digit numbers:

2646798 = 2^1 + 6^2 + 4^3 + 6^4 + 7^5 + 9^6 + 8^7 = 2 + 36 + 64 + 1296 + 16807 + 531441 + 2097152 = 2646798

Now try some base behaviour. Some power-sums in base-10 are power-sums in another base:

175 = 1^1 + 7^2 + 5^3 = 1 + 49 + 125 = 175
175 = 6D[b=27] = 6^1 + 13^2 = 6 + 169 = 175

1306 = 1^1 + 3^2 + 0^3 + 6^4 = 1 + 9 + 0 + 1296 = 1306
1306 = A[36][b=127] = 10^1 + 36^2 = 10 + 1296 = 1306

Here is an incomplete list of double-base power-sums:

83 = 1103[b=4] = 1^1 + 1^2 + 0^3 + 3^4 = 1 + 1 + 0 + 81 = 83
83 = 29[b=37] = 2^1 + 9^2 = 2 + 81 = 83

126 = 105[b=11] = 1^1 + 0^2 + 5^3 = 1 + 0 + 125 = 126
126 = 5B[b=23] = 5^1 + 11^2 = 5 + 121 = 126

175 = 1^1 + 7^2 + 5^3 = 1 + 49 + 125 = 175
175 = 6D[b=27] = 6^1 + 13^2 = 6 + 169 = 175

259 = 2014[b=5] = 2^1 + 0^2 + 1^3 + 4^4 = 2 + 0 + 1 + 256 = 259
259 = 3G[b=81] = 3^1 + 16^2 = 3 + 256 = 259

266 = 176[b=13] = 1^1 + 7^2 + 6^3 = 1 + 49 + 216 = 266
266 = AG[b=25] = 10^1 + 16^2 = 10 + 256 = 266

578 = 288[b=15] = 2^1 + 8^2 + 8^3 = 2 + 64 + 512 = 578
578 = 2[24][b=277] = 2^1 + 24^2 = 2 + 576 = 578

580 = 488[b=11] = 4^1 + 8^2 + 8^3 = 4 + 64 + 512 = 580
580 = 4[24][b=139] = 4^1 + 24^2 = 4 + 576 = 580

731 = 209[b=19] = 2^1 + 0^2 + 9^3 = 2 + 0 + 729 = 731
731 = 2[27][b=352] = 2^1 + 27^2 = 2 + 729 = 731

735 = 609[b=11] = 6^1 + 0^2 + 9^3 = 6 + 0 + 729 = 735
735 = 6[27][b=118] = 6^1 + 27^2 = 6 + 729 = 735

1306 = 1^1 + 3^2 + 0^3 + 6^4 = 1 + 9 + 0 + 1296 = 1306
1306 = A[36][b=127] = 10^1 + 36^2 = 10 + 1296 = 1306

1852 = 3BC[b=23] = 3^1 + 11^2 + 12^3 = 3 + 121 + 1728 = 1852
1852 = 3[43][b=603] = 3^1 + 43^2 = 3 + 1849 = 1852

2943 = 3EE[b=29] = 3^1 + 14^2 + 14^3 = 3 + 196 + 2744 = 2943
2943 = [27][54][b=107] = 27^1 + 54^2 = 27 + 2916 = 2943


Previously pre-posted (please peruse):

Narcissarithmetic #1
Narcissarithmetic #2

Narcissarithmetic #2

It’s easy to find patterns like these in base ten:

81 = (8 + 1)^2 = 9^2 = 81

512 = (5 + 1 + 2)^3 = 8^3 = 512
4913 = (4 + 9 + 1 + 3)^3 = 17^3 = 4913
5832 = (5 + 8 + 3 + 2)^3 = 18^3 = 5832
17576 = (1 + 7 + 5 + 7 + 6)^3 = 26^3 = 17576
19683 = (1 + 9 + 6 + 8 + 3)^3 = 27^3 = 19683

2401 = (2 + 4 + 0 + 1)^4 = 7^4 = 2401
234256 = (2 + 3 + 4 + 2 + 5 + 6)^4 = 22^4 = 234256
390625 = (3 + 9 + 0 + 6 + 2 + 5)^4 = 25^4 = 390625
614656 = (6 + 1 + 4 + 6 + 5 + 6)^4 = 28^4 = 614656
1679616 = (1 + 6 + 7 + 9 + 6 + 1 + 6)^4 = 36^4 = 1679616

17210368 = (1 + 7 + 2 + 1 + 0 + 3 + 6 + 8)^5 = 28^5 = 17210368
52521875 = (5 + 2 + 5 + 2 + 1 + 8 + 7 + 5)^5 = 35^5 = 52521875
60466176 = (6 + 0 + 4 + 6 + 6 + 1 + 7 + 6)^5 = 36^5 = 60466176
205962976 = (2 + 0 + 5 + 9 + 6 + 2 + 9 + 7 + 6)^5 = 46^5 = 205962976

1215766545905692880100000000000000000000 = (1 + 2 + 1 + 5 + 7 + 6 + 6 + 5 + 4 + 5 + 9 + 0 + 5 + 6 + 9 + 2 + 8 + 8 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0)^20 = 90^20 = 1215766545905692880100000000000000000000

Patterns like this are much rarer:

914457600 = (9 x 1 x 4 x 4 x 5 x 7 x 6)^2 = 30240^2 = 914457600

3657830400 = (3 x 6 x 5 x 7 x 8 x 3 x 4)^2 = 60480^2 = 3657830400

I haven’t found a cube like that in base ten, but base six supplies them:

2212 = (2 x 2 x 1 x 2)^3 = 12^3 = 2212 (b=6) = 8^3 = 512 (b=10)
325000 = (3 x 2 x 5)^3 = 50^3 = 325000 (b=6) = 30^3 = 27000 (b=10)
411412 = (4 x 1 x 1 x 4 x 1 x 2)^3 = 52^3 = 411412 (b=6) = 32^3 = 32768 (b=10)

And base nine supplies a fourth and fifth power:

31400 = (3 x 1 x 4)^4 = 13^4 = 31400 (b=9) = 12^4 = 20736 (b=10)
11600 = (1 x 1 x 6)^5 = 6^5 = 11600 (b=9) = 6^5 = 7776 (b=10)

Then base ten is rich in patterns like these:

81 = (8^1 + 1^1) x (8 + 1) = 9 x 9 = 81

133 = (1^2 + 3^2 + 3^2) x (1 + 3 + 3) = 19 x 7 = 133
315 = (3^2 + 1^2 + 5^2) x (3 + 1 + 5) = 35 x 9 = 315
803 = (8^2 + 0^2 + 3^2) x (8 + 0 + 3) = 73 x 11 = 803
1148 = (1^2 + 1^2 + 4^2 + 8^2) x (1 + 1 + 4 + 8) = 82 x 14 = 1148
1547 = (1^2 + 5^2 + 4^2 + 7^2) x (1 + 5 + 4 + 7) = 91 x 17 = 1547
2196 = (2^2 + 1^2 + 9^2 + 6^2) x (2 + 1 + 9 + 6) = 122 x 18 = 2196

1215 = (1^3 + 2^3 + 1^3 + 5^3) x (1 + 2 + 1 + 5) = 135 x 9 = 1215
3700 = (3^3 + 7^3 + 0^3 + 0^3) x (3 + 7 + 0 + 0) = 370 x 10 = 3700
11680 = (1^3 + 1^3 + 6^3 + 8^3 + 0^3) x (1 + 1 + 6 + 8 + 0) = 730 x 16 = 11680
13608 = (1^3 + 3^3 + 6^3 + 0^3 + 8^3) x (1 + 3 + 6 + 0 + 8) = 756 x 18 = 13608
87949 = (8^3 + 7^3 + 9^3 + 4^3 + 9^3) x (8 + 7 + 9 + 4 + 9) = 2377 x 37 = 87949

182380 = (1^4 + 8^4 + 2^4 + 3^4 + 8^4 + 0^4) x (1 + 8 + 2 + 3 + 8 + 0) = 8290 x 22 = 182380
444992 = (4^4 + 4^4 + 4^4 + 9^4 + 9^4 + 2^4) x (4 + 4 + 4 + 9 + 9 + 2) = 13906 x 32 = 444992

41500 = (4^5 + 1^5 + 5^5 + 0^5 + 0^5) x (4 + 1 + 5 + 0 + 0) = 4150 x 10 = 41500
3508936 = (3^5 + 5^5 + 0^5 + 8^5 + 9^5 + 3^5 + 6^5) x (3 + 5 + 0 + 8 + 9 + 3 + 6) = 103204 x 34 = 3508936
3828816 = (3^5 + 8^5 + 2^5 + 8^5 + 8^5 + 1^5 + 6^5) x (3 + 8 + 2 + 8 + 8 + 1 + 6) = 106356 x 36 = 3828816
4801896 = (4^5 + 8^5 + 0^5 + 1^5 + 8^5 + 9^5 + 6^5) x (4 + 8 + 0 + 1 + 8 + 9 + 6) = 133386 x 36 = 4801896
5659875 = (5^5 + 6^5 + 5^5 + 9^5 + 8^5 + 7^5 + 5^5) x (5 + 6 + 5 + 9 + 8 + 7 + 5) = 125775 x 45 = 5659875


Previously pre-posted (please peruse):

Narcissarithmetic