The alchemists dreamed of turning dross into gold. In mathematics, you can actually do that, metaphorically speaking. If palindromes are gold and non-palindromes are dross, here is dross turning into gold:

22 = 10 + 12

222 = 10 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 23 + 24

484 = 10 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 34

555 = 10 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 34 + 35 + 36

2002 = nonpalsum(10,67)

36863 = nonpalsum(10,286)

45954 = nonpalsum(10,319)

80908 = nonpalsum(10,423)

113311 = nonpalsum(10,501)

161161 = nonpalsum(10,598)

949949 = nonpalsum(10,1417)

8422248 = nonpalsum(10,4136)

13022031 = nonpalsum(10,5138)

14166141 = nonpalsum(10,5358)

16644661 = nonpalsum(10,5806)

49900994 = nonpalsum(10,10045)

464939464 = nonpalsum(10,30649)

523434325 = nonpalsum(10,32519)

576656675 = nonpalsum(10,34132)

602959206 = nonpalsum(10,34902)

[...]

The palindromes don’t seem to stop arriving. But something unexpected happens when you try to turn gold into gold. If you sum palindromes to get palindromes, you’re soon hit by what you might call a palindrought, where no palindromes appear:

1 = 1

3 = 1 + 2

6 = 1 + 2 + 3

111 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 11 + 22 + 33

353 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 11 + 22 + 33 + 44 + 55 + 66 + 77

7557 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99 + 101 + 111 + 121 + 131 + 141 + 151 + 161 + 171 + 181 + 191 + 202 + 212 + 222 + 232 + 242 + 252 + 262 + 272 + 282 + 292 + 303 + 313 + 323 + 333 + 343 + 353 + 363 + 373 + 383

2376732 = palsum(1,21512)

That’s sequence A046488 at the OEIS. And I suspect that the sequence is complete and that the palindrought never ends. For some evidence of that, here’s an interesting pattern that emerges if you look at palsums of 1 to repdigits 9[…]9:

50045040 = palsum(1,99999)

50045045040 = palsum(1,9999999)

50045045045040 = palsum(1,999999999)

50045045045045040 = palsum(1,99999999999)

50045045045045045040 = palsum(1,9999999999999)

50045045045045045045040 = palsum(1,999999999999999)

50045045045045045045045040 = palsum(1,99999999999999999)

50045045045045045045045045040 = palsum(1,9999999999999999999)

50045045045045045045045045045040 = palsum(1,999999999999999999999)

As the sums get bigger, the carries will stop sweeping long enough and the sums may fall into semi-regular patterns of non-palindromic numbers like 50045040. If you try higher bases like base 909, you get more palindromes by summing palindromes, but a palindrought arrives in the end there too:

1 = palsum(1)

3 = palsum(1,2)

6 = palsum(1,3)

A = palsum(1,4)

[...]

66 = palsum(1,[104]) (palindromes = 43)

LL = palsum(1,[195]) (44)

[37][37] = palsum(1,[259]) (45)

[73][73] = palsum(1,[364]) (46)

[114][114] = palsum(1,[455]) (47)

[172][172] = palsum(1,[559]) (48)

[369][369] = palsum(1,[819]) (49)

6[466]6 = palsum(1,[104][104]) (50)

L[496]L = palsum(1,[195][195]) (51)

[37][528][37] = palsum(1,[259][259]) (52)

[73][600][73] = palsum(1,[364][364]) (53)

[114][682][114] = palsum(1,[455][455]) (54)

[172][798][172] = palsum(1,[559][559]) (55)

[291][126][291] = palsum(1,[726][726]) (56)

[334][212][334] = palsum(1,[778][778]) (57)

[201][774][830][774][201] = palsum(1,[605][707][605]) (58)

[206][708][568][708][206] = palsum(1,[613][115][613]) (59)

[456][456][569][569][456][456] = palsum(1,11[455]11) (60)

22[456][454][456]22 = palsum(1,21012) (61)

Note the palindrome for palsum(1,21012). All odd bases higher than 3 seem to produce a palindrome for 1 to 21012 in that base (21012 in base 5 = 1382 in base 10, 2012 in base 7 = 5154 in base 10, and so on):

2242422 = palsum(1,21012) (base=5)

2253522 = palsum(1,21012) (b=7)

2275722 = palsum(1,21012) (b=11)

2286822 = palsum(1,21012) (b=13)

2297922 = palsum(1,21012) (b=15)

22A8A22 = palsum(1,21012) (b=17)

22B9B22 = palsum(1,21012) (b=19)

22CAC22 = palsum(1,21012) (b=21)

22DBD22 = palsum(1,21012) (b=23)

And here’s another interesting pattern created by summing squares in base 9 (where 17 = 16 in base 10, 40 = 36 in base 10, and so on):

1 = squaresum(1)

5 = squaresum(1,4)

33 = squaresum(1,17)

111 = squaresum(1,40)

122221 = squaresum(1,4840)

123333321 = squaresum(1,503840)

123444444321 = squaresum(1,50483840)

123455555554321 = squaresum(1,5050383840)

123456666666654321 = squaresum(1,505048383840)

123456777777777654321 = squaresum(1,50505038383840)

123456788888888887654321 = squaresum(1,5050504838383840)

Then a palindrought strikes again. But you don’t get a palindrought in the triangular numbers, or numbers created by summing the integers, palindromic and non-palindromic alike:

1 = 1

3 = 1 + 2

6 = 1 + 2 + 3

55 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

66 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11

171 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18

595 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34

666 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36

3003 = palsum(1,77)

5995 = palsum(1,109)

8778 = palsum(1,132)

15051 = palsum(1,173)

66066 = palsum(1,363)

617716 = palsum(1,1111)

828828 = palsum(1,1287)

1269621 = palsum(1,1593)

1680861 = palsum(1,1833)

3544453 = palsum(1,2662)

5073705 = palsum(1,3185)

5676765 = palsum(1,3369)

6295926 = palsum(1,3548)

35133153 = palsum(1,8382)

61477416 = palsum(1,11088)

178727871 = palsum(1,18906)

1264114621 = palsum(1,50281)

1634004361 = palsum(1,57166)

5289009825 = palsum(1,102849)

6172882716 = palsum(1,111111)

13953435931 = palsum(1,167053)

16048884061 = palsum(1,179158)

30416261403 = palsum(1,246642)

57003930075 = palsum(1,337650)

58574547585 = palsum(1,342270)

66771917766 = palsum(1,365436)

87350505378 = palsum(1,417972)

[...]

If 617716 = palsum(1,1111) and 6172882716 = palsum(1,111111), what is palsum(1,11111111)? Try it for yourself — there’s an easy formula for the triangular numbers.