Vapor Tales

Frogs: Inside Their Remarkable World, Ellin Beltz (2005)

Everyone say “eye”. Because I think that is one of the most important reasons that frogs and toads are so endearing. Their large eyes and their large mouths make them seem full of character and full of interest in the world. Their four limbs and plumpness are important too, I think, and I suspect that looking at them activates some of the same regions of the brain as looking at a baby does. All that would certainly help explain why we like them. The Californian herpetologist Ellin Beltz doesn’t spend long examining the roots of the human affection for and interest in the batrachians, as frogs and toads are called. “Is it perhaps that frogs look and act rather like people?” she asks and then gets on with the science. But she herself is obviously a dedicated batrachophile and she’s written an interesting and exhaustive introduction to what is indeed a remarkable world. There are frogs smaller than a human fingernail, like Psyllophryne didactyla, the gold frog of southeastern Brazil, and frogs larger than a human head. Or one species larger than some heads, anyway: Conraua goliath, the goliath frog of Cameroon. There are also frogs, the Malaysian Rhacophorus spp.,* that fly, or glide, at least, on the extended webbing between their toes, and frogs that literally stick around for sex: “males of the genus Breviceps from southern Africa” have very “short front legs” and “use special skin secretions to glue themselves onto the females” (pg. 149). Elsewhere, the Australian desert spadefoot toad, Notaden nichollsi, uses a “smelly skin secretion” to ward off predators (pg. 58).

(*Sp. = species, singular; spp. = species, plural.)

Front cover of Frogs by Ellin Beltz

That species isn’t very dangerous, but the much smaller poison-arrow frogs of South America definitely are: “the golden dart frog, Phyllobates terribilis, is credited with producing ‘the most toxic naturally occurring substance’ ” (pg. 147). In captivity, deprived of the wild food from which they manufacture their toxins, the poison-arrow frogs are harmless, but their remarkable colours remain: they look like harlequins in all shades of the rainbow. Whether these rainbow frogs are also raines beaux, or “beautiful frogs”, as they might be called in French, is a matter of taste, but some frogs definitely are beautiful. So are some toads: the male golden toad, Bufo periglenes, is a vivid golden-orange. Or rather, was: it was once a tourist attraction as it swarmed “out to mate in great congregations” in the Monteverde Cloud Forest Reserve in Costa Rica, but “photographs seem to be all that remains of this exquisite amphibian” (pg. 43). Yes, the ugliness in this book isn’t supplied only by the villainous-looking cane toad, Bufo marinus, which has been munching and poisoning its way through Australia’s native wildlife since it was foolishly introduced there in 1935. There’s also ugliness in the story of what is happening to the world’s amphibians. They’ve been disappearing everywhere and most of chapter four, “Environment & Adaptation”, is given over to the threats they face from pollution, bacteria, viruses, and various fungi, including the chytrid fungus responsible for “chytridiomycosis, a fatal fungus disease that leads to thickening and sloughing of the skin and death by unknown causes” (pg. 118).

African clawed frogs, Xenopus spp., are “asymptomatic carriers” of chytrid fungus. Because they were once used in pregnancy tests, they have been introduced all over the world and may have helped the fungus spread. However, the ever-growing human population is perhaps the greatest threat to the survival of wild amphibia, as it is to fauna and flora in general. More people mean more roads and more cars, for example:

Roadkill numbers are immense. Frogs don’t even have to be hit by a vehicle; the force of its passing can literally suck them inside out. Hundreds of flattened and inverted corpses lie roadways on rainy nights. (pg. 121)

Some species may be disappearing without ever being recorded. Perhaps the strangest and unfroggy-est frog in this book is Nakisakabatrachus sahyadrensis, the Kerala purple frog of southern India, which has tiny eyes and dark, leathery skin. It lives underground most of the year and was only described by scientists in 2003. Its tiny eyes are part of its adaptation to underground life. Eyes are a guide to ecology in other ways: a batrachian’s angle of vision is a clue to its edibility. Frogs, whose eyes are usually positioned so they can see both ahead and behind, are edible and fear predators. Toads, which usually can’t see behind themselves, are inedible and don’t fear predators. I can remember once picking up a tiny toadlet, or juvenile toad, and feeling my fingers sting from the secretions it released. Among Beltz’ personal anecdotes in this book is one about what happened when she and a colleague found a Couch’s spadefoot toad, Scaphiopus couchii, on the U.S.-Mexico border:

It was drizzling, and I brought the toad into the car for a good identification. We were paging through the field guide and put on the defoggers to clear the windows when we were overcome by a wave of noxious vapor emitted by the toad. It was like teargas and we exploded out of the car, put the toad into a ditch and tried to air out the car. Whatever toxin the toad let loose that night, I was down for 24 hours, sleeping with runny eyes and all the symptoms of a major cold. My colleague was similarly affected. Other reports of noxious fumes from southwestern toads have been [made]. (“Frog Miscellany”, pg. 149)

Stories like that are part of what makes this such an enjoyable book and although, at 175 pages with lots of large photos, it’s too brief to explore thoroughly all the biological topics it raises, there are pointers to some interesting aspects of evolution – and mathematics. Try this description of the Eastern spadefoot, Scaphiopus holbrookii, and plains spadefoot, Spea bombifrons, which live in deserts in North America:

When the rains fall, they congregate at temporary pools to breed. It takes the eggs two weeks to hatch into tadpoles. At this point, more rain is needed; otherwise the pools dry up and the plant-eating tadpoles die. Some tadpoles become cannibalistic under these harsh conditions, permitting some individuals to survive long enough to transform into frogs by eating the bodies of their herbivorous relatives. (ch. 2, “Frog Families”, pg. 37)

Consider the evolutionary mathematics of this cannibalism. It’s easy to understand genes instructing an individual to eat. Less easy to understand are genes that might instruct an individual to let itself be eaten. But the tadpoles in a temporary pool can be seen as a kind of super-organism. The super-organism initially has many mouths to turn algae and so on into tadpole-flesh. Then, as the pool shrinks, the super-organism begins to eat itself, having exploited the resources of the pool with maximum efficiency. It’s possible there is even a class of tadpole that exists to put on flesh fast and then be eaten by its siblings. It would never breed, but evolutionarily speaking that behaviour would be no more paradoxical than the sterile workers among ants, bees and wasps. Or the juvenile birds that let themselves starve to death in an over-crowded, underfed nest. The apparently suicidal genes of a cannibalized tadpole or sterile worker or starved nestling do not survive in that non-breeding individual, but they promote behaviour that enables unactivated copies of themselves to survive better in other individuals – as Richard Dawkins explains in The Blind Watchmaker (1986).

Swimming in another kind of pool is responsible for other evolved features in batrachians: their sometimes vivid colours or cunning camouflage. For millions of years, images of batrachians have been created in the chemical sludge of predators’ brains. And so, like snakes and wasps, batrachians signal their toxicity with colour. Or use colour to disguise their outlines or blend into the background. But batrachians are also like octopuses and other cephalopods: they can change their colour using special structures in their skin called chromatophores. One of the briefest but most interesting sections in this book discusses this shade-shifting and the cells responsible for it: the melanophores (responsible for black and brown colouration), xanthophores (yellow), erythrophores (red and orange), and iridophores (responsible for iridescence in the poison-arrow frogs). But what is briefly mentioned is extensively illustrated: almost every page has one or more colourful photographs of frogs and toads, usually in what appears to be their natural habitat.

There are also diagrams of batrachian anatomy and evolutionary relationships and pictures of art and sculpture in chapter five, “Frogs in Myth and Culture”. You’ll learn in the evolutionary discussions that toads aren’t a distinct group, because they don’t have a single common ancestor distinguishing them from frogs. But they look different to us and chapter five says that they were sacred to Heqet, the Egyptian goddess of childbirth and fertility. She’s depicted with an almost scientifically precise green toad, or Bufo viridis, on an ivory obstetric wand found near Thebes and dating from “around 2000 to 1700 BCE” (pg. 131). That “BCE”, like the “humanmade objects” mentioned on page 47, is a reminder that Ellin Beltz is a modern, and politically correct, American, unlike a Californian born in the Victorian era whose absence can’t, alas, be called a flaw in this book. The Auburn writer Clark Ashton Smith (1893-1961) and his interplanetary toad-god Tsathoggua and man-slaying toad-witch Mère “Mother of Toads” Antoinette aren’t famous and Beltz may never have heard of them. Instead, she discusses Shakespeare and the three toad-toxin-brewing witches of Macbeth (1611), Mark Twain and “The Celebrated Jumping Frog of Calaveras County” (1867), and Kenneth Graham and Toad of Toad Hall from Wind in the Willows (1908).

In short, she covers all the batrachian bases, from biology to books by way of batrachophagous bats and a bee-eating Bufo japonicus. The batrachophage, or frog-eater, is the fringe-lipped bat, Trachops cirrhosus of Central America, which tracks its prey by homing in on their calls. And here’s another acoustic anecdote to end on, demonstrating that Hollywood’s hegemony is partly herpetological:

Chorus frogs, Pseudacris spp., include the Pacific treefrog, Pseudacris regilla, the “ribbet frog” known to every movie fan. At some time in the early days of talkies, someone recorded frogs in a pond, probably near the famous Hollywood sign. The same audio loop is used over and over again in movies, leading to hysteria among amphibian researchers who hear “ribbet” in darkest Africa, South America and Australia… The Pacific treefrog is actually restricted to the western edge of North America. (ch. 2, “Frog Families”, pg. 49)

Double Bubble

The most mysterious thing in the universe is also the most intimate: consciousness. It’s an inti-mystery, something we experience constantly at first hand and yet cannot describe or explain. We are each a double bubble: a bubble of flesh and a bubble of conscious experience. The second bubble bursts regularly, when we sleep. Sooner or later, the first bubble will burst too, when we die. And that will be it for the second bubble, the bubble of consciousness. Or will it? Can consciousness survive death? Can it exist without a material substrate? Or without a particular kind of material substrate: the soggy, sparky substance of the brain? Can the clean, dry metal of a computer be conscious? Who knows? The double bubble attracts lots of double-u’s: what, where, why, when, (w)how. What is consciousness? What is its relation to matter? Is it king or courtier? Where does it exist? Why does it exist? When? And how?

Continue reading Double Bubble

Spin: The Beginning

Spiders, Michael Chinery, with illustrations by Sophie Allington (1996)

Spiders are special: they spin. And they’ve been doing so for millions of years. Their speciality is the root of their name: spider is from Middle English spither, meaning “spinner”. The root is even more obvious in German: Spinne. Not all languages call spiders spinners, but then not all spiders obviously spin. Some don’t make webs, though “all species protect their eggs by packing them in silken cocoons” (pg. 24). Not all spiders use venom either, but all of them are predators, mostly on insects and other arthropods, sometimes on larger prey like lizards, birds, and even fish. That is another part of what is interesting about them: like all predators, they are lurkers on the threshold between life and death. Spiders are dedicated death-dealers and sophisticated slayers. To see that dedication and sophistication in action, just watch a spider spinning its web. It will be using a minute brain to follow complex but flexible rules, because invariable webs would not fit an variable world. This is why spiders, like human beings, need nervous systems: web-making is an instinct, laid down in the genes, but instincts have to be triggered and adjusted according to the messages in sense-data.

Front cover of Spiders by Michael Chinery, illustrated by Sophie Allington

One thing needing adjustment is the kind of silk used: you’ll learn from this book that in most species “individuals possess between three and six different kinds of silk” (pg. 25). It ranges from pyriform and ampullate silk, extruded from the “anterior spinneret” and used for webs and life-lines, to aggregate and flagelliform, extruded from the “posterior spinneret” and used, inter alia, for the sticky threads of orb-spiders’ webs. There’s also cribellate silk, produced by the cribellum, or “little sieve”, a special organ in the cribellate spiders:

The cribellate spider produces perfectly normal silk from its spinnerets and then covers them with the cribellum silk, which is brushed from the cribellum by a compact patch of bristles, called the calamistrum [Latin for “curling-iron”], on each hind leg. Each bristle carries several rows of microscopic teeth and acts like a minute hair brush. The cribellum silk forms ribbons but, because the legs vibrate rapidly when brushing, the individual threads – only 0.000015mm in diameter – are thrown into microscopic loops… Any insect unfortunate to touch the ribbons quickly gets its feet entangled in the loops and is held fast – without any glue. (“Spider Silk”, pg. 28)

Sticky aggregate silk is a chemical solution to the problem of catching prey; entangling cribellate silk is a physical one. Neither has been consciously designed: evolution did the work by selecting and rejecting millions of individuals down millions of generations. It’s important, and awe-inspiring, to remember that spiders and humans have a common ancestor that didn’t use silk. The spider-line, step by unconscious step, perfected the manufacture and manipulation of silk; our line, step by less unconscious step, perfected the manufacture and manipulation of mind. That’s why human beings write books about spiders and not vice versa. But both lines, the arachnid and the human, were undertaking a mathematical journey: we followed complicated trajectories in multi-dimensional information-space, or rather our genes did. Natural selection, and its odder and sometimes antagonistic cousin sexual selection, are editors of a microscopic text called DNA, which lays down recipes for brains, bodies, and behaviour.

Most natural history books describe what is cooked by DNA, not the genetic recipe itself, but then the cooked product is the most obvious thing and what we’ve been familiar with longest. But all biology, whether it’s studying bats or beetles, frogs or fungi (or dragonflies), is about evolutionary variations on an organic theme. DNA is like a giant recipe-book or giant musical score: each species is a particular dish or particular melody. Higher biological divisions are like styles or genres: spiders taste or sound similar, as it were, and they harmonize with scorpions, mites, and ticks, other eight-legged members of the class Arachnida. But the harmonies extend further and terrestrial life can be seen as a giant symphony played by the orchestra of evolution. If we discover life away from the earth, we’ll find it playing a half-familiar tune: mathematics, the Magistra Mundi, or Mistress of the World, will have been waving her baton there too and Richard Dawkins suggests that Darwinian evolution may be a universal principle, as the only means for life to arise from inanimate matter.

Or the only means until we can create life ab novo, that is: human beings are on the verge of being able to synthesize life from chemicals. Intelligent design, a fantasy of the anti-Darwinists, will soon become a reality in human laboratories. It will be further proof of the praeternatural nature of humanity, but this book provides proof of that too. Pages sixty-four to sixty-five, for example, illustrate the arachnid instinct of web-making using the human skill of drawing. One of the attractions of the book is that, apart from a photograph of the yellow-and-black orb-spider, Argiope bruennichi, on the front cover, all the illustrations are hand-drawn, from the anatomical cross-section of a typical spider on page twenty-three to the “balletic courtship dance of a jumping spider” on page eighty-seven. You can admire the sophistication of Sophie Allington’s drawings rather in the way you admire the sophistication of a spider’s web, though the credit of a human’s abilities generally accrue to the individual, rather than to the species. But is drawing a Darwinian activity like web-making? That is, is it a means of enhancing the survival of an individual and the transmission of the individual’s genes? One big difference between drawing and web-spinning, of course, is that not all human beings draw or create other forms of art. And human beings will not have specific genes for drawing in the way that we have specific genes for language. Which is another praeternatural part of human nature: all other forms of life use a symbolic code to survive, because DNA is a symbolic code, but human DNA allows us to use a second symbolic code, language – and sometimes a third, mathematics.

The mathematics in this book is implicit, but Michael Chinery supplies the explicit language. Although his prose is not as obviously and powerfully admirable as the illustrations, it provides the most meat for the mind and the imagination:

Bolas spiders, also called angling or fishing spiders, live in North and South America, Africa and Australasia. Odd-looking creatures whose squat bodies are often studded with horns and “warts”, they are among the very few araneid spiders whose bites are potentially dangerous to people. Typified by Australia’s Dichrostichus magnificus, commonly known as the magnificent spider, they cling motionless to leaves and twigs by day and don’t stir till nightfall. Hanging from a short thread attached to the underside of a twig, each spider pulls out a “fishing line” about 5cm (2 inches) long and carrying one or more blobs of very sticky glue. Whirling the line about with one of its legs, the spider waits for a moth to take the bait. This seems a bit of a hit-and-miss method, and pretty tiring as well, but the spider has a secret weapon in its armoury – a scent just like that released by certain female moths. The male moths can’t resist it and come flocking to the spider’s line… The bolas spider does not usually need to whirl its line around for more than a few minutes each evening. (“Finding Food”, pg. 71-2)

This hunting technique is ingenious, effective, and entirely undesigned: lying isn’t confined to human beings, because this type of spider is lying with a chemical, rather as human fisherman lie with baited hooks. Other spiders fish more literally: the European aquatic spider, Argyroneta aquatica, “inhabits ponds and slow-moving streams all over the temperate regions of Eurasia” (pg. 48-9). It builds a “domed web” underwater, fills it with air from the surface, and uses it as a base for hunting and chamber for feasting: “water would dilute the digestive enzymes poured onto the prey if the spider tried to dine in the water” (pg. 49). But digestive enzymes don’t just help spiders feed: they help spiders overwhelm their food. Like snake venoms, spider venoms are a kind of super-charged saliva, designed to deal death rather than simply help with digestion. Webs are not complete solutions to the problems of predation: large insects can break free, given time, or fight back when cornered. Venom is a force-multiplier, or rather a force-nullifier. And it is a sinister thing to see in operation, as a non-scientific observer of spiders, John Betjeman (1906-84), described in his poem “The Cottage Hospital”:

…Apple and plum espaliers
   basked upon bricks of brown;
The air was swimming with insects
   and children played in the street.
Out of this bright intentness
   into the mulberry shade
Musca domestica (housefly)
   swung from the August light
Slap into slithery rigging
   by the waiting spider made
Which spun the lithe elastic
   till the fly was shrouded tight.
Down came the hairy talons
   and horrible poison blade
And none of the garden noticed
   that fizzing, hopeless fight.

(from A Few Late Chrysanthemums, 1954)

The beauty of a web, and sometimes of the web-mistress too, combine unsettlingly with the deadliness of its purpose: spiders are like tiny vampires. But they aren’t very dangerous to man and it’s puzzling that one of the commonest phobias, arachnophobia, should be inspired by them. There are a lot of arachnophobes in countries that don’t have dangerous spiders and their phobia can seriously affect their lives. Is it an exaggeration of an instinct that was written into our brains long ago, when we were smaller and more vulnerable creatures living in the tropics? Perhaps. I like the idea that human beings have records of spiders not just in our books and idioms, but in our DNA too, transmitted from generation to generation since we left the trees of Africa. For example, I like and am fascinated by spiders, but I am still startled if I see a large spider unexpectedly close at hand, even though I know that no species in Britain is dangerous and that none will bite without being provoked.

But fear is a potent, and piquant, spice at the spider-feast. Spiders are like snakes and sharks: interesting in part because they are associated with pain, injury, and death. This book discusses that aspect of their natural history and much more beside. Its chatty text and attractive illustrations make it an excellent introduction to a strange and wonderful family of animals, and to biology and evolution in general. Spiders have existed long enough and widely enough to have diversified into all manner of ecological niches, from parasitism to mimicry. Some spin silk, some squirt it. Some catch prey, some steal it. Meet them all in this set of symbols and codes.

For the Love of Mycology

Mushrooms, Roger Phillips, assisted by Derek Reid, Ronald Rayner, Geoffrey Kibby, and Alick Henrici, designed by Jill Bryan (MacMillan 2006)

In 1981, Roger Phillips began his career in natural history publishing with a book on mushrooms. In 2006, he was back for another bite at the chanterelle. And it would have been a fitting way to end his career, because this is one of the most important books ever published on fungi. It puts its best photo forward for hundreds of pages and hundreds of species, all the way from the massive, like the Giant Puffball, Calvatia gigantea, which can be bigger than a man’s head, to the minute, like the Conifer Disco, Lachnellula subtilissima, which is smaller than a baby’s fingernail. En route, it takes in the gorgeous, the gaudy, and the grotesque, like the Angel’s Wings, Pleurocybella porrigens, the Vermilion Waxcap, Hygrocybe miniata, and the Goliath Webcap, Cortarius praestans. With the g-crew come the delicious, the deadly, and the delicate: the Oyster Mushroom, Pleurotus ostreatus, the Destroying Angel, Amanita virosa, and the Milky Bonnet, Hemimycena lactea. And let’s not forget the phantasmagoric, the phosphorescent, and the phallic: the Devil’s Fingers, Clathrus archeri, the Jack O’ Lantern, Omphalotus illudens, and the Stinkhorn, Phallus impudicus. Which is Latin for “shameless dick”. Fungi can also look like ears, brains, and birds’-nests: the Jelly Ear, Auricularia auricula-judaei, the Morel, Morchella esculenta, and the Common Bird’s Nest, Crucibulum laeve. Oh, and they can look like cages, clubs, and coral too: the Red Cage, Clathrus ruber, the Giant Club, Clavariadelphus pistillarius, and the Violet Coral, Clavaria zollingeri.

And that covers only their appeal, or offence, to the eye and the taste-buds: they can also appeal to, or offend, the nose and fingertips. On olfactory side there are the Coconut Milkcap, Lactarius glyciosmus, the Pear Fibrecap, Inocybe fraudans, the Geranium Brittlegill, Russula fellea, the Mousepee Pinkgill, Entoloma incanum, the Iodine Bolete and Bonnet, Bolitus impolitus and Mycena filopes, and the “Stinking” set: the Brittlegill, Russula foetens, the Dapperling pair Lepiota cristata and L. felina, and the Earthfan, Thelephora palmata. On the tactile side, there are the various Velvets: the Bolete, Suillus variegatus, the Brittlegill, Russula violeipes, the Shank, Flammulina velvutipes, the Shield, Pluteus umbrosus, the Tooth, Hydnellum spongiosipes, and the Toughshank, Kuehneromyces mutabilis. There are too many shaggies, slimies, and slipperies to list, like the Shaggy Parasol, Macrolepiota rhadoces, the Slimy Waxcap, Hygrocybe irrigata, and the Slippery Jack, Suillus luteus. All in all, mushrooms make me muse on Middle-earth. Tolkien’s world is full of richness and variety. So is the world of fungi. The folk and things of Middle-earth can be beautiful or ugly, delicate or sturdy, colourful or drab, tasty or deadly, lovers of light or dwellers in dark. Mushrooms, toadstools, and their smaller relatives are the same. You could find one or more species in this book to match all of Tolkien’s creations: men, wizards, hobbits, elves, dwarves, orcs, trolls, ents, and more. The Cortinarius genus is hobbit-like, for example: stocky, sturdy, and coloured mostly in earthy ochres, yellows, and reds. More elf- and wizard-like are the genera Lepiota and Macrolepiota: these mushrooms are taller and more attractively proportioned. For pre-Tolkienean elves, look to the small and slender Micromphale, Omphalina and Mycena genera, shaped like little umbrellas, bonnets, and parachutes.

For the dark side of Tolkien’s world, look everywhere: almost every group of fungi can supply poisons and sicken or slay the incautious or ignorant. But the deadliest of all are the Amanitas. There’s something suitably and sardonically Sauronic about the modus operandi of the Deathcap, Amanita phalloides:

Poisoning by the Deathcap is characterized by a delay of 6 to 24 hours between ingestion and the onset of symptoms, during which time the cells of the liver and kidney are attacked… The next stage is one of prolonged and violent vomiting and diarrhoea accompanied by severe abdominal pains, lasting for a day or more. Typically this is followed by an apparent recovery, when the victim may be released from hospital or think their ordeal is over, but death results from kidney and liver failure in a few days. (pg. 144-45)

No antidote has yet been discovered to the amatoxins, as the most dangerous compounds are called, and the mortality rate from Amanita poisoning is “still up to 90%”. The Fly Agaric, Amanita muscaria, with its red, white-spotted cap, is the most famous in the genus, but not responsible for the most fatalities. It’s trippily toxic: “a strong hallucinogen and intoxicant, and used as such by the Sami of northern Scandinavia” (pg. 140). Phillips suggests that the Sami began to use A. muscaria by “observing its effects on reindeer”, which “like it so much that all one has to do to round up a wandering herd is to scatter pieces of Fly Agaric on the ground.” Elsewhere in Europe, it was used against flies: the common English name “comes from the practice of breaking the cap into platefuls of milk… to stupefy flies.” Fungi are not plants and form a separate kingdom in biological classification, but they are like plants in the way they can be either delicious, deadly, or dementing.

But if some weren’t so delicious, some others wouldn’t have dealt death so often: the Amanitas are similar in appearance to the Wood mushrooms in the genus Agaricus and can be found in similar places. Agaricus contains some of the most widely eaten of all mushrooms, including the Cultivated Mushroom, A. bisporus, “believed to be the wild form of the many cultivated crop varieties” (pg. 242). But literally cultivated mushrooms don’t compare to wild-grown: I can still remember the richness and flavour of some Field Mushrooms, A. campestris, I picked near the witches’ haunt of Pendle Hill in Lancashire. My other gastro-mycological excursions have included wild-grown puffball and a large Oyster Mushroom that had sprouted from the wood of a sea-side ice-cream stand. It fell off under its own weight, or I wouldn’t have carried it off: Oyster Mushrooms aren’t just good to eat, they’re also good to look at and I would have left it undisturbed otherwise. But picking a mushroom is rather like picking an apple or pear: the visible part is a fruiting body that sprouts from the thread-like hyphae growing in soil, wood, compost, or dung. So you don’t necessarily kill a fungus by picking the part you can see, though you do obviously interfere with its reproduction. The part you can see is what this book is about: unlike David N. Pegler’s Pocket Guide to Mushrooms and Toadstools, there are no drawings of the microscopic spores, merely descriptions: for example, “9-12×5-7μ, elliptical to almond-shaped. Spore-print dark purplish-brown. Chrysocystidia absent. Cheilocystidia lageniform, thin-walled” is in the entry for the Blueleg Brownie, Psilocybe cyanescens.

The fungus itself is described as “hallucinogenic” and “said to be extremely strong” (pg. 253). This book isn’t just for those seeking succulence: it can guide the searcher for synaesthesia too. The Liberty Cap or Magic Mushroom, Psilocybe semilanceata, doesn’t just open the doors of perception: it can throw down the walls of the senses too and make you hear sights or taste colours. The psycho-active psilocybes are all covered and described, but I’ve preferred to leave psycho-mycology alone and get my mental thrills from the look of, and language about, fungi. The scientific names, as always, are interesting, informative, and occasionally uninspired: with a common name like Angel’s Wings, Pleurocybella porrigens has a disappointing scientific name. But there’s a surprisingly complex descriptive vocabulary to learn if you’re interested in acquiring an expertise in these apparently primitive plant-alikes. You’ll even have to dabble in chemistry: the simplest way to distinguish some species is to dip them. The “chrysocystidia” mentioned above are cells “that turn yellowish” – Greek chrysos, “golden”, is hyperbolic – in “alkali solutions”. That’s from the glossary on page 13, but the weird and wonderful words – chlamydospore, dendrophyses, gloeocystidia, lageniform, merulioid, sphaeropedunculate – aren’t illustrated, only defined. This isn’t a textbook of mycology, but an identification guide. And I wouldn’t say it was a work of art like Pegler’s Pocket Guide. It’s well-designed and aesthetically pleasing, but photographs have a superficiality, even a triviality, that Pegler’s drawings don’t. Yes, you can see exactly how the fungi look from a photograph, but there’s no room for the wit and quirkiness I described in my review of the Pocket Guide: the closest you get to the extra-mycological touches I described there is an occasional pine-cone, as in the photos for the Pine Milkcap, Lactarius musteus, the Pinecone Cap, Strobilurus tenacellus, and the Rosy Spike, Gomphidius roseus.

But David Pegler covered far fewer species in a smaller and more subjective book. His science was stronger because he included images of spores, but Roger Phillips has contributed more to mycology, let alone to other fields of natural history. If I had to choose between the two books, I would choose the Pocket Guide, because it’s richer and earthier, and also more minor, in a way that suits its topic better. Fortunately, I don’t have to choose: both books are available for mycophiles and both help explain what is fascinating about fungi. But there are universal aspects to their appeal, beside the particularity of their fungality: maths, the Magistra Mundi, or Mistress of the World, reigns among mushrooms as She reigns everywhere else. Like beetles, though rather more so, fungi are topological variants on a theme: evolution has shaped, squeezed, slendered, squattened, and swollen them over millions of years to produce the huge variety on display in this book. I think architecture can illuminate how they grow: fungi face some of the same problems as architects in erecting and securing their fruiting bodies, but they’re working with less sturdy material. Fungal flesh doesn’t have the toughness and flexibility of wood or the solidity and sturdiness of stone, but it can do surprising things: the Pavement Mushroom, Agaricus bitorquis, is “sometimes found growing through asphalt” (pg. 241).

“Pavement Mushroom”, like “Orange Peel Fungus”, “Purple Stocking Webcap”, “Rooting Poisonpie”, and “Snaketongue Truffleclub”, is one of the odd common names that may catch your eye in the detailed index, which offers specific and generic names, including the outmoded ones that Phillips wanted to update from his early book. But he’s expanded as well as revised, adding some oversea species that “travellers might find on their visits abroad” (introduction, pg. 6). Or might find unexpectedly at home: the Plantpot Dapperling, Leucocoprinus birnbaumii, is a “tropical species that can be found in heated greenhouses” and is shown growing with a potted cactus on page 135. Not illustrated, but mentioned in the entry for the Deathcap, is the “tropical fungus Galerina sulcipes”, which “has a higher α-amanitin content” and is “occasionally found in hothouses” (pg. 145). That would be a sinister note to end on, so instead I’ll end on the Scarlet Elfcup, Sacroscypha austriaca. This is one of my favourite fungi in the book. It is indeed scarlet, it does indeed look like a cup, in the early stages of its growth at least, and its common name is a reminder of why mushrooms are associated with magic and fungi with the fantastic. They can appear very suddenly in unexpected places and have a special association with the melancholy and mystery of autumn. The more elaborate and evolved plant and animal kingdoms are more obvious and found in more places, but they couldn’t exist without fungi, which “break down leaf litter and dead wood and thus ensure that the surface of the world has a fertile layer of soil rather than being a heap of detritus” (pg. 6). In other words: no fungi, no flowers, firs, or figs. In short: no mushrooms, no man. The fungal kingdom isn’t, and can’t be, conscious of the debt owed to it by the other two kingdoms, but this book can be seen as part payment. To see the inhabitants of that mycological Middle-earth in all their variety and strangeness, look no further, because you’ll find no fungaller.

Beyond Gold: A Weevil

Cover of Living Jewels by Poul Beckmann

Living Jewels: The Natural Design of Beetles, Poul Beckmann (2001)

Richard Dawkins wrote about the Blind Watchmaker, but the Blind Watchmaker often works in collaboration. This book is about his brother, the Blind Jeweller, who creates the cases for the watchwork of beetles. Sometimes those cases are gorgeous, sometimes they’re grotesque, and sometimes they’re both at once. Beetle #77 in this survey, Phanaeus igneus floridanus, is a squat giant with a huge curving horn on its head, but its thorax and abdomen shimmer with metallic purple, green, red, and gold. If that beetle’s a glam-rock sumo-wrestler, then beetle #49, Julodis hiritiventris sanguinipilig (sic – should be hirtiventris sanguinipilis), is pure punk: green legs and a long dark-blue body scattered with tufts of yellow-orange bristles. Elsewhere you’ve got New Romantics with elaborately patterned bodies and sweeping, dandyish antennae (Rosenbergia straussi and Batus barbicornis), death-metal-heads with gleaming black bodies and fearsome-looking but completely harmless horns (Xylotrupes gideon and Allomyr(r?)hina dichotomus taiwana), and even Status-Quo-ites wearing what looks like worn, work-stained denim (various Eupholus species).

It’s entertaining to look through this book and imagine whose backing band or album cover a particular beetle should play in or sit on, but sometimes you won’t be able to match a beetle to a band, because there are more kinds of beetle than musical genres. Beetles, or rather evolution, has invented more than human beings have, but the same forces have been at work. Topologically speaking, a doughnut is identical to a tea-cup, because one is a distorted variant of the other. Similarly, all the beetles in this book are distorted topological variants of each other: like genres of popular music, they’re variants on a theme. Evolution hasn’t altered the ingredients of beetles, just the quantities used to cook each species: changing the width and shape of the thorax, the length and design of the antennae and legs, and so on. But topology isn’t psychology, and just as glam-rock sounds quite different to punk, though the common ancestor is clearly there if you listen, so a doughnut looks quite different to a teacup and Phanaeus igneus floridanus looks quite different to Julodis hirtiventris sanguipilis.

There’s much more to beetles than their appearance, of course, but one of this book’s shortcomings, because it’s a coffee-table conversation-piece rather than a scientific survey, is that it tells you almost nothing about the ecology and behaviour behind the photographs. And the book’s title is misleading, in fact, because the jewels aren’t living: all the photos are of dead beetles on white backgrounds. The book also tells you very little about the meaning and history of the (sometimes misspelt) scientific names, even though these are fascinating, beautiful, and grotesque in their own right. Instead, there’s a brief but interesting – and occasionally wrong: Chrysophora isn’t Latin – introduction, then page after page of the gorgeous and grotesque photographs people will be buying this book for. Finally, there are some brief “Beetle Profiles”, describing where individual species were caught and how their family lives and feeds. I would have liked to know much more, though the beetles’ beauty is in some ways increased by its mystery and by what might be called the futility of its appearance. Countless millions of these beetles have lived and died without any human brain ever appreciating their beauty and strangeness, and if human beings disappeared from the planet they would continue to live and die unappreciated. They’re not here for us, but without us they could never be recognized as the living jewels they are. Some might draw metaphysical conclusions from that and conclude that they are here for us after all, but I draw a mathematical conclusion: mathematics governs the evolution of both beetles and brains, which is why beetles can appeal to us so strongly.

Living Jewels – Website accompanying the book and its sequel.

Cover of Living Jewels 2 by Poul Beckmann

Death and the Midden

Front cover of The Mitchell Beazley Pocket Guide to Mushrooms and Toadstools by David N. PeglerThe Mitchell Beazley Pocket Guide to Mushrooms and Toadstools, David N. Pegler (1982)

A little gem of a book in a consistently excellent natural history series. Rather like its subject, it’s an example of something very rich and rewarding that’s growing quietly in a neglected niche. Representational art, banished from the academies and galleries over the past century, has survived in natural history illustration. When I think of contemporary art that’s moved or delighted me I often think of men like Richard Lewington, illustrator of Field Guide to the Dragonflies of Britain and Europe, and Ralph Thompson, who illustrated Gerald Durrell’s books about animal-collecting in Africa and South America. David N. Pegler’s art is more realistic and detailed than Thompson’s and he may be an even better draughtsman. But if you think he has less scope for quirkiness and humor, with non-animal, let alone non-mammalian, subjects, you’d be wrong. Each of the fungi illustrated here is a finely detailed, delicately tinted portrait in miniature and in situ, often accompanied by the dried leaves or bark or pine-needles of the spot in which Pegler presumably found it. And one of the pleasures of looking through the book is uncovering the unique and often witty touches Pelger has added to some of the portraits. For example, there’s the beetle crawling towards two specimens of Tricholoma portenosum – ‘so good to eat the French call it “Marvellous Tricholoma” (Tricholome merveilleux)’ – and the crumpled sweet-wrapper lying near three Agaricus xanthodermus, the Yellow-staining mushroom found in or on “Parks, roadsides and wasteland”.

But Pegler usually lets the fungi speak for themselves in their bewildering variety of voices from their startlingly wide range of habitats: there are fungi that specialize in sand, marsh, burnt ground, and dung, as well as the more familiar dead wood and leaf-litter. As so often, the English-speaking world still has a lot to learn from the French: where many Brits or Americans are familiar with two or three edible species, the French are familiar with dozens. The Italians, on the other hand, knew a lot about another kind of mushroom during the Renaissance: the poisonous varieties whose symbols – black-skull-on-white-background for “dangerous” and white-skull-on-black-background for “deadly” – add a regular macabre frisson to Pegler’s drawings.

Inner pages of Mushrooms and Toadstools

One of the deadliest fungi, the Destroying Angel (Amanita virosa), is one of the most beautiful too, like an evil young witch out of Grimms’ Fairy Tales: it’s pure white, slender-stemmed, and with lacy clinging veils, but it reveals its true nature by its “heavy soporific smell”. “Do not mistake for Agaricus silvicola”, Pegler warns (the Latin adjective silvicola, meaning “wood-dwelling”, only exists in the feminine form). One of the ways to avoid mistaking the two is that A. silvicola, the Wood mushroom, “smells of aniseed”. Fungi can delight, or revolt, the nose as well as the eye: there’s the Coconut-scented milk-cap (Lactarius glyciosmus) and the Geranium-scented russula (Russula fellea) on the delightful side, and the Nitrous mycena (Mycena leptocephala), “often smell[ing] of nitric acid”, and the Stinking parasol (Lepiota cristata), with its “unpleasant rubbery smell”, on the revolting.

Unless it can assist identification like that, Pegler doesn’t usually say much about any particular fungus, because he’s writing mainly for identification and has to cram hundreds of species into a pocket-sized space. But each species must have its own unique ecological story and Pegler has managed to make his drawings portraits from the wild and not just mycological mug-shots. And each is accompanied by an illustration of its spores, as a further aid to identification and further invitation for the browsing eye. Spores, like fungi themselves, come in many different shapes and sizes. All of which makes this book my favorite in the Mitchell Beazley series. Every book is worth owning or looking at, but the Pocket Guide to Butterflies, for example, has no artistic charm or whimsy. The butterflies are drawn strictly and severely for identification, with nothing accompanying them: no plants, no landscapes, and no jeux d’esprit. And European butterflies don’t come in many varieties or colors: although they often have hidden charms, most of them are frumpish and dowdy when set beside their glittering, gleaming, multi-spectacular cousins from the tropics.

That isn’t true of European fungi, as Pegler demonstrates: both they and their spores come in all shapes, sizes, and patterns. And all colors too. The Hygrocybe genus gleams with reds, yellows, and lilacs, and the species there look much more like magic mushrooms than the genuine article: the unassuming little Liberty Cap, Psilocybe semilanceata, which can open the doors of perception to a world of wonder. Fungi can drive you mad, kill you, or delight your palate, eye, and intellect, and this book captures their richness and variety better than any other I’ve come across. Art, natural history, and culinary guide: it’s all here and The Mitchell Beazley Pocket Guide to Mushrooms and Toadstools is, in its quiet way, a much greater example of European high culture than anything the modern Turner Prize has produced.

Bat’s the Way to Do It!

I think Britain would be much better off without three things that start with “c”: cars, canines, and coos (sic (i.e., pigeons)). But perhaps I should add another c-word to the list: cats. I like cats, but there’s no doubt that, in terms of issues around negative components/aspects of conservation/bio-diversity issues vis-à-vis the feline community/demographic, they’re buggers for killing wildlife:

A recent survey by the Mammal Society was based on a sample of 1,000 cats, countrywide, over the summer of 1997. The results included only “what the cat brought in” and ignored what it ate or left outside. Leaving aside this substantial hidden kill, it still concluded that cats killed about 230,000 bats a year. This is equivalent to more than the entire population of any species other than the two most common pipistrelles. If these 1,000 cats are typical, and there is no reason to believe that they are not, cats kill many more bats than all natural predators combined. They are one of the biggest causes of bat mortality in Britain, perhaps the biggest. (Op. cit., chapter 6, “Conservation”, pg. 139)

Cover of British Bats by John D. Altringham

That is the unhappy conclusion in John D. Altringham’s very interesting and educative book British Bats (HarperCollins, 2003). Accordingly, I’d rather have fewer cats and more bats. Anyone but a cat-fanatic – and cat-fanatics are found in one or two places – should feel the same, and even the fanatics might reconsider if they read this book. The cat family contains some of the most beautiful and athletic animals on earth; the bat family contains some of the strangest and most interesting. In fact, all bats are strange: they’re mammals capable of sustained powered flight. Little else unites them: in chapter two, Altringham describes the huge variety of bats around the world. They live in many places and live off many things. Some drink nectar, some drink blood; some eat fruit, some eat fish. Some roost in caves, some in trees. Some hibernate, some migrate. Some use echolocation and some don’t. Bats are much more varied than cats and scientifically speaking are much more interesting.

Although echolocation isn’t universal, it is the most interesting aspect of bats’ behaviour and it’s used by all the species found in Britain, from the big ones, like the noctule and greater horseshoe bat, Nyctalus noctula and Rhinolophus ferrumequinum, to the small ones, like the whiskered bat and the pipistrelles, Myotis mystacinum and Pipistrellus spp.[1] Two of the pipistrelles are in fact most easily distinguished by the frequencies they call at: the 45 kHz pipistrelle, Pipistrellus pipistrellus, and the 55 kHz pipistrelle, Pipistrellus pygmaeus. As their English names suggest, one calls at an average of 45 kilo-Herz, or 45,000 cycles a second, and the other at an average of 55. The two species weren’t recognized as separate until recently: they look almost identical, although the 55 kHz is “on average… very slightly smaller”, and they forage for food in the same places, although the 55 kHz is “more closely associated with riparian habitat” (that is, it feeds more over rivers and other bodies of water). But examine their calls on a spectrograph, an electronic instrument for visually representing sounds, and there’s a much more obvious difference. This is a good example of how much the scientific study of bats depends on technology. Human beings didn’t need science to know about and understand the ways a cat uses its senses, because they’re refinements of what we use ourselves. We might marvel at the acuity of a cat’s eyes or ears, as we might marvel at the acuity of a dog’s nose, but we know for ourselves what seeing, hearing, and smelling are like.

Echolocation is something different. Bats don’t just see with their ears, as it were: they illuminate with their mouths, pouring out sound to detect objects around them. And the sound has to be very loud: “The intensity of a pipistrelle’s call, measured 10 centimetres in front of it, is as much as 120 decibels: that is the equivalent of holding a domestic smoke alarm to your ear.”[2] The “inverse square law”, whereby the intensity of sound (or light) falls in ratio to the square of the distance it travels, means that the returning echoes are far, far fainter than the original call. It’s as though Motörhead, playing at full volume, could hear someone at the back of the crowd unwrapping a toffee. How do bats call very loudly and hear very acutely? How do they avoid deafening themselves and drowning their own echoes? These are some of the questions bat-researchers have investigated and Altringham gives a fascinating summary of the answers. For example, they avoid deafening themselves by switching off their ears as they call. They’ve had to solve many other tricky acoustic problems to perfect their powers of echolocation.

Or rather evolution has had to solve the problems. The DNA of bats has changed in many ways as they evolved from the common mammalian ancestor (which also gave rise to you, me, and the author of this book) and those changes in DNA represent changes in their neurology, anatomy, and appearance. It’s easy to see that hearing is important for bats, because their eyes are relatively small and their ears are often large and rigid and come in a great variety of shapes. What isn’t easy to see is what those ears are supplying: the bat-brain and its astonishing ability to process and classify sound-data as though it were light-data. Bats can create sound-pictures of their surroundings in complete darkness. Of course, the feline or human ability to create light-pictures is astonishing too, but we’re too familiar with it to remember that easily. Bats aren’t just marvels in themselves: they should encourage us to marvel at ourselves and what our own brains can do. The digestive system of a bat, cat, or human needs food; the nervous system of a bat, cat, or human needs data. That’s what our sense-organs are there for and in principle it doesn’t matter whether we create a picture of the world with our eyes or with our ears.

Male noctule (Nyctalus noctula) calling from tree-roost to attract mates

Male noctule calling from tree-roost

In practice, there are some very important differences between sound and light. Light works instantly and powerfully on a terrestrial scale; sound takes its time and is much more easily diluted or blocked. A hunting cat can scan an illuminated or unilluminated environment for free, because it doesn’t have to generate the light it sees by or the sound it hears by. Hunting bats have to pay when they scan their environment, because they’re using energy to create sound and induce echoes. Once they’ve got their data, both cats and bats have to pay to process it: it takes energy to run a brain. But bat-brains are solving more complicated problems than cat-brains: Altringham describes the questions a flying bat has to answer when it detects the echo of an insect:

How far away is the insect?… How big is it?… In which direction does it lie?… How fast is it flying and in what direction?… What is it?… (ch. 3, “The Biology of Temperate Bats”, pp. 42-3)

Like insect-eating birds, bats can answer all these questions in mid-flight, but what is relatively easy for birds, using their eyes, is a much greater computational problem for bats, using their ears. “Computational” is the key word: brains are mathematical mechanisms and process sense-data using algorithms that run on chemicals and electricity. Bats were intuitively using mathematical concepts like doppler shift and frequency modulation (as in FM radio) millions of years before man invented mathematics, but man-made mathematics is an essential tool in the study of echolocation. For example, the concept of wavelength, or the distance between one crest of a sound-wave and the next, is very important in understanding how bats perceive objects. Light has very short wavelengths, so humans and other visual animals can easily resolve small objects. Sound has much longer wavelengths, so bats find it hard to resolve small objects. But some find it harder than others: Daubenton’s bat, Myotis daubentonii, and other Myotis spp. “can resolve distances down to about 5 millimetres when given tasks to perform in the laboratory”. But horseshoe bats, Rhinolophus spp., “can do little better than 12 millimetres.”

Why this difference? You have to look at the nature of the sound being produced by the different species: the Myotis spp. use “high frequency FM calls”; the Rhinolophus use “predominantly CF [constant frequency] calls”. The mathematical nature of the call determines the bats’ powers of perception. Calls can also determine how easily a bat can identify an insect: “relatively long calls can have a ‘flutter detector’… If a call is 50 milliseconds long, then within one echo a bat can detect the full wingbeat of insects beating their wings at more than 50 Hz.”[3] So bats can tell one kind of insect from another, something like the way a blindfolded human can tell a bumblebee from a mosquito. But insects aren’t passive as prey and one of the most interesting sections of the book describes how they try to avoid being eaten. Some moths have “ultrasound detectors” and if a moth hears a calling bat, it “will either stop flying and drop toward the ground, or begin a series of rapid and unpredictable manoeuvres involving dives, loops and spirals”.[4] This kind of ecological interaction creates an “evolutionary arms race”: each side evolves to become better at capture or evasion.

The moth/bat air-battle is reminiscent of the air-battles of the Second World War, which involved radar trying to detect bombers and bombers trying to evade radar. One defensive technique was jamming, or attempts to interfere with radar signals or drown them in noise. Some moths may use this technique too. The tiger moths, the Arctiidae, don’t try to escape detection. Instead, they “emit their own, loud clicks”[5], perhaps to interfere with echolocation or startle a predatory bat. Alternatively, Altringham suggests, the clicks may be the aural equivalent of “bright warning colours and patterns”: the moths may be warning bats of their unpalatability. If so, it would be another example of the difference between the costs of sight and the costs of sound. An unpalatable insect in daylight doesn’t have to pay for its warning colours, after the initial investment of creating them, and doesn’t have to know when a predator is watching. An unpalatable insect in the dark, on the other, can’t send out a constant audible warning: it has to select its moment and know when a predator is nearby. Unless, that is, some insects use passive signals of unpalatability, like body modifications that create a distinctive echo.

Bat-researchers don’t know the full story: there is still a lot to learn about bats’ hunting techniques and the ways insects try to defeat them. But “cost” is a word that comes up again and again in this book, which is partly a study in bio-economics. Bats have to pay a lot for echolocation and flight, but flight is a more general phenomenon in the animal kingdom, so the economics of bat flight also illuminates (insonates?) bird and insect flight. Altringham points out a very important but not very obvious fact: that flight is expensive by the unit of time and cheap by the unit of distance. Movement on foot is the opposite: it’s expensive by the unit of distance and cheap by the unit of time. Bats, birds, and insects expend more energy per second in flight, but can travel further and faster in search of food or new habitats. However, bats don’t all fly in the same way: a bat expert can identify different species by their wings alone. The wings vary in “wing loading”, which is “simply the weight of the bat divided by the total area of its wings. Bats with a high wing loading are large and heavy in relation to their wing area, bats with small bodies and large wings have a low wing loading”.[6] Then there’s “aspect ratio”, the “ratio of wingspan to average wing width”, or, because “bats have such an irregular wing shape”, “wingspan squared divided by wing area.”

It’s mathematics again: there are no explicit numbers in a bat’s life, but everything it does, from echolocating to flying, from eating to mating, is subject to mathematical laws of physics, ecology, and economics. Bats have to invest time and energy and make a profit to survive and have offspring. As warm-blooded, fast-moving animals with high energy needs, they’re usually nearer famine than feast, which is one reason they migrate or hibernate to avoid or survive through cold weather and scarcity. They also vary their diet during the year, to take advantage of changes in the abundance of one insect species or another, and seek out specialized feeding niches. Daubenton’s bat, for example, “habitually feeds very low over water”, using echolocation to catch not just flying insects but floating ones too. That is why it needs smooth water to feed over: ponds, lakes, canals and placid streams and rivers. The floating insects are easier to echolocate on a smooth surface, rather like, for humans, a black spider on a white wall. Once spotted, they “are gaffed with the large feet or the tail mechanism and quickly transferred to the mouth as the bat continues its flight”.[7]

Long-eared bat (Plecotus auritus) gleaning harvestman

Long-eared bat gleaning harvestman

One of the photos in the colour section in the middle of the book shows a Daubenton’s bat mirrored in smooth water, having just scooped up prey from the surface. Other photos show other species roosting, perching, or in flight, but the book also has excellent black-and-white illustrations mixed with the text, hand-drawn using a speckled or pointillist technique that suits bats very well. I particularly like the drawings on pages 48, 67 and 101. The first shows a long-eared bat, Plecotus auritus, “gleaning”, or snapping up, a “harvestman” (a long-legged relation of the spiders) from a leaf (ch. 3); the second shows a “male noctule calling from his tree roost to attract mates” (ch. 3); and the third shows a tawny owl trying to catch another long-eared bat (ch. 4).

Owls could be called the avian equivalents of bats: they’re specialized nocturnal hunters with very sharp hearing, but I think they’re both less interesting and more attractive. Bats, with their leathery wings, sometimes huge ears, and oddly shaped noses, are strange rather than attractive and some people find them repulsive. But some people, or peoples, find them divine or lucky: the introduction describes the Mayan bat-god Zotz, with his leaf-shaped nose modelled on that of the phyllostomids, or vampire bats.[8] The Chinese use a ring of five bats to symbolize the “five great happinesses: health, wealth, good luck, long life and tranquillity.”[9] Altringham blames the less positive image of bats in European cultures partly on Bram Stoker’s Dracula, which was first published in 1897. Before then, he says, “bats were not linked with witches, vampires and the evil side of the supernatural in any significant way.”[10] Dracula may have done for bats what the novel Jaws (1974) and its cinematic offspring did for sharks: encouraged human beings to harm the animal fictionally and falsely depicted as villainous.

Daubenton's bats (Myotis daubentonii) in a summer roost

Roosting Daubenton’s bats

If so, British Bats is partly redressing the balance. You can learn a lot from this book about both biology in general and bat-biology in particular. It stimulates the mind, pleases the eye, describes the appearance, ecology, and range of all British species, and points the way to further reading and research. So let’s not hear it for John D. Altringham! Without specialized equipment, that is, but that equipment is getting cheaper and more widely available all the time: you don’t have to be a professional zoologist to record and analyse bat-calls any more. There is still a lot for zoologists, both amateur and professional, to learn about bats. Okay, some of the research – like fitting miniature radio-transmitters to wild bats – seems intrusive and smacks of Weber’s Entzauberung, or “disenchantment”, but the more we know about bats, the more we will be able to help conserve them and their habitats. Bats aren’t villains: cats are. I like both kinds of mammal, but I hope we can find some way in future to help stop the latter preying so heavily on the former. If this book helps publicize the problem, it will be valuable for bat-conservation just as it is already valuable for bat-science. In short, no more brick-bats for Brit-bats: we should control our cats better.

Reviewer’s note: Any scientific mistakes, misinterpretations or misunderstandings in this review are entirely your responsibility.

NOTES

1. sp = species, singular; spp = species, plural.

2. ch. 3, “The Biology of Temperate Bats”, pg. 40

3. Ibid., pg. 45

4. ch. 4, “An Ecological Synthesis”, pg. 98

5. Ibid., pg. 99

6. Ibid., pg. 71

7. ch. 5, “British Bats, Past and Present”, pg. 117

8. ch. 1, “Introduction”, pg. 10. “Phyllostomid” is scientific Greek for “leaf-mouthed clan”.

9. Ibid., pg. 11

10. Ibid., pg. 9

Damsels and Dragons

If I were asked to nominate a great work of 21st-century art, I would not choose anything by the likes of Damien Hirst or the architect Frank Gehry (responsible for the giant metal midden in Bilbao known as the Guggenheim Museum). Instead, I’d put forward something by Klaas-Douwe B. Dijkstra, Richard Lewington, and British Wildlife Publishing of Gillingham in Dorset. They’re not big names like Hirst and Gehry and they’re not earning big money or exercising big influence. And they’re unlike Hirst and Gehry in another way: they’ve created a genuinely beautiful and intellectually stimulating piece of art.

The art-work is called the Field Guide to the Dragonflies of Britain and Europe (2006). Dijkstra oversees the detailed, expert, and fascinating text, Lewington supplies the detailed, accurate, and beautiful drawings, complemented by photographs of dragonflies and damselflies in the wild. Lots of people don’t know the difference between these two suborders of the Odonata, but their common names reflect their appearance: the Zygoptera, or damselflies, are delicate and fold their wings at rest; the Anisoptera, or dragonflies, are robust and always hold their wings at right angles to their bodies. Both come in a huge variety of colours, pure and mixed, as their common names prove: damselflies include the Azure, the Goblet-Marked, the Orange White-legged, the Scarce Blue-Tailed and the Scarce Emerald; dragonflies include the Green and Mosaic Darners, the Banded, Red-Veined, Scarlet, Violet-marked and Yellow-winged Darters, the Orange-spotted Emerald, and the Four-spotted Skimmer. There’s also Somatochlora metallica, the Brilliant Emerald dragonfly, which looks as though it’s made of bright green metal or enamel.

These rich colours, with the complex venation of their wings, have made the Odonata a popular subject for artists and jewellers: for example, the art nouveau master René Lalique (1860-1945) made dragonfly mascots for cars. Unfortunately, the book doesn’t cover the Odonata in art: it’s a scientific text, a microcosm of the macrocosm of biology. Biology depends on accurate description and classification, so odonatology has a rich vocabulary: antehumeral stripes, arculus, carina, clypeus, diapause, discoidal cell, gynomorph, medial supplemental vein, pronotum, pseudopterostigma, siccation, and so on. Even the segments of the abdomen are numbered, from S1, just below the wings, to S9 and S10 at the tip of the tail, where the females have their almost clockwork genitalia. Males have theirs beneath S2, so mating in the Odonata is a complicated, almost tantric, business, as some of the photographs prove. Nomenclature in the Odonata is a complicated, almost incantatory business: Calopteryx splendens, virgo, xanthostoma; Enallagma cyathigerum; Pyrrhosoma nymphula; Anax parthenope, imperator; Ophiogomphus cecilia; Onychogomphus forcipatus; Libellula quadrimaculata; Sympetrum depressiusculum; Zygonyx torridus.

That nomenclature, and that sex-life, are two of the ways that the Odonata are CASean creatures; that is, their complexity, strangeness, and beauty remind me of the work of “the Emperor of Dreams”, the Californian writer Clark Ashton Smith (1893-1961). The obsessive, minutely detailed nature of the book is CASean too, and some of its subjects might literally be emperors in dreams: the common name of the Anax genus is the Emperors. One of these Emperors answered a CASean question I had as I leafed through the book: distribution tides washed back and forth across the little map of Europe that accompanied each specific description, submerging here Britain and Ireland, there France and Spain, here Germany and Scandinavia, there Greece and Turkey, and sometimes all of them at once.

But the strange, isolated island of Iceland, though included on every map, always seemed redundant, like a wall-flower at the Odonatan dance. “Was it a dragon- and damselfly desert?” I wondered. Then I came across Anax epihippiger, or the Vagrant Emperor: “A. epihippiger is the only dragonfly ever recorded on Iceland.” From the magnificent to the minute, from damselflies in the burning deserts of Morocco to dragonflies amid the frosty volcanoes of Iceland, it’s all here in a book that truly does deserve to represent European civilization in the twenty-first century. But doesn’t, alas.