Powers of Persistence

“The persistence of a number is the number of times you need to multiply the digits together before reaching a single digit.” — OEIS

Base 5

23 → 11 → 1 in b5 (c=3) (n=13 in b10)
233 → 33 → 14 → 4 in b5 (c=4) (n=68 in b10)
33334 → 2244 → 224 → 31 → 3 in b5 (c=5) (n=2344 in b10)
444444444444 → 13243332331 → 333124 → 1331 → 14 → 4 in b5 (c=6) (n=244140624 in b10)
3344444444444444444444 → 2244112144242244414 → 13243332331 → 333124 → 1331 → 14 → 4 in b5 (c=7) (n=1811981201171874 in b10)


Base 6

23 → 10 → 0 in b6 (c=3) (n=15 in b10)
35 → 23 → 10 → 0 in b6 (c=4) (n=23 in b10)
444 → 144 → 24 → 12 → 2 in b6 (c=5) (n=172 in b10)
24445 → 2544 → 424 → 52 → 14 → 4 in b6 (c=6) (n=3629 in b10)


Base 7

24 → 11 → 1 in b7 (c=3) (n=18 in b10)
36 → 24 → 11 → 1 in b7 (c=4) (n=27 in b10)
245 → 55 → 34 → 15 → 5 in b7 (c=5) (n=131 in b10)
4445 → 635 → 156 → 42 → 11 → 1 in b7 (c=6) (n=1601 in b10)
44556 → 6666 → 3531 → 63 → 24 → 11 → 1 in b7 (c=7) (n=11262 in b10)
5555555 → 443525 → 6666 → 3531 → 63 → 24 → 11 → 1 in b7 (c=8) (n=686285 in b10)
444555555555555666 → 465556434443526 → 115443241155 → 256641 → 4125 → 55 → 34 → 15 → 5 in b7 (c=9) (n=1086400325525346 in b10)


Base 8

24 → 10 → 0 in b8 (c=3) (n=20 in b10)
37 → 25 → 12 → 2 in b8 (c=4) (n=31 in b10)
256 → 74 → 34 → 14 → 4 in b8 (c=5) (n=174 in b10)
2777 → 1256 → 74 → 34 → 14 → 4 in b8 (c=6) (n=1535 in b10)
333555577 → 3116773 → 5126 → 74 → 34 → 14 → 4 in b8 (c=7) (n=57596799 in b10)


Base 9

25 → 11 → 1 in b9 (c=3) (n=23 in b10)
38 → 26 → 13 → 3 in b9 (c=4) (n=35 in b10)
57 → 38 → 26 → 13 → 3 in b9 (c=5) (n=52 in b10)
477 → 237 → 46 → 26 → 13 → 3 in b9 (c=6) (n=394 in b10)
45788 → 13255 → 176 → 46 → 26 → 13 → 3 in b9 (c=7) (n=30536 in b10)
2577777 → 275484 → 13255 → 176 → 46 → 26 → 13 → 3 in b9 (c=8) (n=1409794 in b10)


Base 10

25 → 10 → 0 (c=3)
39 → 27 → 14 → 4 (c=4)
77 → 49 → 36 → 18 → 8 (c=5)
679 → 378 → 168 → 48 → 32 → 6 (c=6)
6788 → 2688 → 768 → 336 → 54 → 20 → 0 (c=7)
68889 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (c=8)
2677889 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (c=9)
26888999 → 4478976 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (c=10)
3778888999 → 438939648 → 4478976 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (c=11)
277777788888899 → 4996238671872 → 438939648 → 4478976 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (c=12)


Base 11

26 → 11 → 1 in b11 (c=3) (n=28 in b10)
3A → 28 → 15 → 5 in b11 (c=4) (n=43 in b10)
69 → 4A → 37 → 1A → A in b11 (c=5) (n=75 in b10)
269 → 99 → 74 → 26 → 11 → 1 in b11 (c=6) (n=317 in b10)
3579 → 78A → 46A → 1A9 → 82 → 15 → 5 in b11 (c=7) (n=4684 in b10)
26778 → 3597 → 78A → 46A → 1A9 → 82 → 15 → 5 in b11 (c=8) (n=38200 in b10)
47788A → 86277 → 3597 → 78A → 46A → 1A9 → 82 → 15 → 5 in b11 (c=9) (n=757074 in b10)
67899AAA → 143A9869 → 299596 → 2A954 → 2783 → 286 → 88 → 59 → 41 → 4 in b11 (c=10) (n=130757439 in b10)
77777889999 → 2AA174996A → 143A9869 → 299596 → 2A954 → 2783 → 286 → 88 → 59 → 41 → 4 in b11 (c=11) (n=199718348047 in b10)


Base 12

26 → 10 → 0 in b12 (c=3) (n=30 in b10)
3A → 26 → 10 → 0 in b12 (c=4) (n=46 in b10)
6B → 56 → 26 → 10 → 0 in b12 (c=5) (n=83 in b10)
777 → 247 → 48 → 28 → 14 → 4 in b12 (c=6) (n=1099 in b10)
AAB → 778 → 288 → A8 → 68 → 40 → 0 in b12 (c=7) (n=1571 in b10)
3577777799 → 3BA55B53 → 557916 → 5576 → 736 → A6 → 50 → 0 in b12 (c=8) (n=17902874277 in b10)


Base 13

27 → 11 → 1 in b13 (c=3) (n=33 in b10)
3B → 27 → 11 → 1 in b13 (c=4) (n=50 in b10)
5A → 3B → 27 → 11 → 1 in b13 (c=5) (n=75 in b10)
9A → 6C → 57 → 29 → 15 → 5 in b13 (c=6) (n=127 in b10)
27A → AA → 79 → 4B → 35 → 12 → 2 in b13 (c=7) (n=439 in b10)
8AC → 58B → 27B → BB → 94 → 2A → 17 → 7 in b13 (c=8) (n=1494 in b10)
35AB → 99C → 59A → 288 → 9B → 78 → 44 → 13 → 3 in b13 (c=9) (n=7577 in b10)
9BBB → 55B6 → 99C → 59A → 288 → 9B → 78 → 44 → 13 → 3 in b13 (c=10) (n=21786 in b10)
2999BBC → 591795 → 65B5 → 99C → 59A → 288 → 9B → 78 → 44 → 13 → 3 in b13 (c=11) (n=13274091 in b10)
28CCCCCC → 9B89B93 → 591795 → 65B5 → 99C → 59A → 288 → 9B → 78 → 44 → 13 → 3 in b13 (c=12) (n=168938314 in b10)
377AAAABCCC → 2833B38BCB → B588A8A → 777995 → 4B2CA → 4A64 → 58B → 27B → BB → 94 → 2A → 17 → 7 in b13 (c=13) (n=494196864368 in b10)


Base 14

27 → 10 → 0 in b14 (c=3) (n=35 in b10)
3C → 28 → 12 → 2 in b14 (c=4) (n=54 in b10)
5B → 3D → 2B → 18 → 8 in b14 (c=5) (n=81 in b10)
99 → 5B → 3D → 2B → 18 → 8 in b14 (c=6) (n=135 in b10)
359 → 99 → 5B → 3D → 2B → 18 → 8 in b14 (c=7) (n=667 in b10)
CCC → 8B6 → 29A → CC → A4 → 2C → 1A → A in b14 (c=8) (n=2532 in b10)
359AB → 55AA → CA8 → 4C8 → 1D6 → 58 → 2C → 1A → A in b14 (c=9) (n=130883 in b10)
CDDDD → 8CC8C → 2C436 → 8B6 → 29A → CC → A4 → 2C → 1A → A in b14 (c=10) (n=499407 in b10)
3ABBDDDD → DAAAD54 → 63DAC8 → 5BC1A → 2596 → 2A8 → B6 → 4A → 2C → 1A → A in b14 (c=11) (n=397912927 in b10)
488AABCCCDDD → 39A59889584 → A89DBD84 → 598D14C → 5BC1A → 2596 → 2A8 → B6 → 4A → 2C → 1A → A in b14 (c=12) (n=18693488093783 in b10)


Base 15

28 → 11 → 1 in b15 (c=3) (n=38 in b10)
3D → 29 → 13 → 3 in b15 (c=4) (n=58 in b10)
5E → 4A → 2A → 15 → 5 in b15 (c=5) (n=89 in b10)
28C → CC → 99 → 56 → 20 → 0 in b15 (c=6) (n=582 in b10)
8AE → 4EA → 275 → 4A → 2A → 15 → 5 in b15 (c=7) (n=1964 in b10)
5BBB → 1E8A → 4EA → 275 → 4A → 2A → 15 → 5 in b15 (c=8) (n=19526 in b10)
BBBCC → 3BBC9 → B939 → BD3 → 1D9 → 7C → 59 → 30 → 0 in b15 (c=9) (n=596667 in b10)
2999BDE → 3C9CE6 → 66B7C → 9CC9 → 36C9 → 899 → 2D3 → 53 → 10 → 0 in b15 (c=10) (n=30104309 in b10)
39BBCCCCCD → 41CBD6D4C → 23C96E6 → 66B7C → 9CC9 → 36C9 → 899 → 2D3 → 53 → 10 → 0 in b15 (c=11) (n=140410607143 in b10)


Base 16

28 → 10 → 0 in b16 (c=3) (n=40 in b10)
3E → 2A → 14 → 4 in b16 (c=4) (n=62 in b10)
5F → 4B → 2C → 18 → 8 in b16 (c=5) (n=95 in b10)
BB → 79 → 3F → 2D → 1A → A in b16 (c=6) (n=187 in b10)
2AB → DC → 9C → 6C → 48 → 20 → 0 in b16 (c=7) (n=683 in b10)
3DDE → 1BBA → 4BA → 1B8 → 58 → 28 → 10 → 0 in b16 (c=8) (n=15838 in b10)
379BDD → 55C77 → 396C → 798 → 1F8 → 78 → 38 → 18 → 8 in b16 (c=9) (n=3644381 in b10)


Base 17

29 → 11 → 1 in b17 (c=3) (n=43 in b10)
3F → 2B → 15 → 5 in b17 (c=4) (n=66 in b10)
5G → 4C → 2E → 1B → B in b17 (c=5) (n=101 in b10)
9F → 7G → 6A → 39 → 1A → A in b17 (c=6) (n=168 in b10)
CE → 9F → 7G → 6A → 39 → 1A → A in b17 (c=7) (n=218 in b10)
3DD → 1CE → 9F → 7G → 6A → 39 → 1A → A in b17 (c=8) (n=1101 in b10)
9CF → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=9) (n=2820 in b10)
2AFF → F9C → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=10) (n=12986 in b10)
55DDF → CF4G → 25EB → 55A → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=11) (n=446163 in b10)
39DDGG → DGCG7 → 35F54 → F9C → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=12) (n=5079174 in b10)
DEGGGG → 86DCDC → DGCG7 → 35F54 → F9C → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=13) (n=19710955 in b10)
6BBBBBEEF → 6FBEB7G8 → 5B39ACE → 1CED8G → 35F54 → F9C → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=14) (n=46650378808 in b10)
2BDDDDDEEEEEF → 1FBBBB76B714 → 6FBEB7G8 → 5B39ACE → 1CED8G → 35F54 → F9C → 5A5 → EC → 9F → 7G → 6A → 39 → 1A → A in b17 (c=15) (n=1570081251102035 in b10)


Base 18

29 → 10 → 0 in b18 (c=3) (n=45 in b10)
3F → 29 → 10 → 0 in b18 (c=4) (n=69 in b10)
5E → 3G → 2C → 16 → 6 in b18 (c=5) (n=104 in b10)
8D → 5E → 3G → 2C → 16 → 6 in b18 (c=6) (n=157 in b10)
2BB → D8 → 5E → 3G → 2C → 16 → 6 in b18 (c=7) (n=857 in b10)
2CEG → GAC → 5GC → 2H6 → B6 → 3C → 20 → 0 in b18 (c=8) (n=15820 in b10)
AABF → 2EGC → GAC → 5GC → 2H6 → B6 → 3C → 20 → 0 in b18 (c=9) (n=61773 in b10)
8GGHH → 5B8DE → DD2G → GC8 → 4D6 → H6 → 5C → 36 → 10 → 0 in b18 (c=10) (n=938627 in b10)
AAAAAAH → 8HGH28 → 5B8DE → DD2G → GC8 → 4D6 → H6 → 5C → 36 → 10 → 0 in b18 (c=11) (n=360129437 in b10)


Base 19

2A → 11 → 1 in b19 (c=3) (n=48 in b10)
3G → 2A → 11 → 1 in b19 (c=4) (n=73 in b10)
5F → 3I → 2G → 1D → D in b19 (c=5) (n=110 in b10)
AB → 5F → 3I → 2G → 1D → D in b19 (c=6) (n=201 in b10)
DH → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=7) (n=264 in b10)
2BC → DH → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=8) (n=943 in b10)
7BG → 37G → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=9) (n=2752 in b10)
DII → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=10) (n=5053 in b10)
4AAH → IFH → CDB → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=11) (n=31253 in b10)
3BGII → 15HGF → 2I9D → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=12) (n=472548 in b10)
EEFHH → 69GBI → 15HGF → 2I9D → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=13) (n=1926275 in b10)
ADEFFH → 2F7HHE → 69GBI → 15HGF → 2I9D → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=14) (n=26556906 in b10)
4ADDDDEEF → 3E7919IH → 2HH7FE → 69GBI → 15HGF → 2I9D → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=15) (n=77518543969 in b10)
9999999BBFHHHI → 6B41DG4CB3BG → H27A5F3D → 2F7HHE → 69GBI → 15HGF → 2I9D → BCD → 4E6 → HD → BC → 6I → 5D → 38 → 15 → 5 in b19 (c=16) (n=399503342991325867 in b10)


Base 20

2A → 10 → 0 in b20 (c=3) (n=50 in b10)
3H → 2B → 12 → 2 in b20 (c=4) (n=77 in b10)
6D → 3I → 2E → 18 → 8 in b20 (c=5) (n=133 in b10)
7J → 6D → 3I → 2E → 18 → 8 in b20 (c=6) (n=159 in b10)
DI → BE → 7E → 4I → 3C → 1G → G in b20 (c=7) (n=278 in b10)
6DE → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=8) (n=2674 in b10)
CGG → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=9) (n=5136 in b10)
2BHI → GGC → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=10) (n=20758 in b10)
CDGG → 4JGG → 28CG → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=11) (n=101536 in b10)
2DEGJ → DGCG → 4JGG → 28CG → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=12) (n=429939 in b10)
77BBHJ → BJ7D7 → GCGD → 4JGG → 28CG → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=13) (n=23612759 in b10)
BBBCEEHHHHH → 8DCB4G21J4 → 21ED4J4 → DGCG → 4JGG → 28CG → 7DC → 2EC → GG → CG → 9C → 58 → 20 → 0 in b20 (c=14) (n=118569903663157 in b10)


Base 21

2B → 11 → 1 in b21 (c=3) (n=53 in b10)
3I → 2C → 13 → 3 in b21 (c=4) (n=81 in b10)
6H → 4I → 39 → 16 → 6 in b21 (c=5) (n=143 in b10)
AK → 9B → 4F → 2I → 1F → F in b21 (c=6) (n=230 in b10)
GH → CK → B9 → 4F → 2I → 1F → F in b21 (c=7) (n=353 in b10)
4GI → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=8) (n=2118 in b10)
GII → BFI → 6F9 → 1HC → 9F → 69 → 2C → 13 → 3 in b21 (c=9) (n=7452 in b10)
5FHJ → 2CJC → C8C → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=10) (n=53296 in b10)
2BGIJ → CKKC → 64CI → BFI → 6F9 → 1HC → 9F → 69 → 2C → 13 → 3 in b21 (c=11) (n=498286 in b10)
FHKKK → AA5HI → GAJF → 4J89 → C8C → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=12) (n=3083912 in b10)
3BDGHJK → AHKKA3 → AA5HI → GAJF → 4J89 → C8C → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=13) (n=304907819 in b10)
6BBHIJJJJ → G1BHJ4DF → AHKKA3 → AA5HI → GAJF → 4J89 → C8C → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=14) (n=247765672579 in b10)
3DDGGGGGGGIIJ → 284GJDKAD63I → 5D65FHGK3 → 5BIB3KC → 1J6DC9 → H5JF → 2CJC → C8C → 2CI → KC → B9 → 4F → 2I → 1F → F in b21 (c=15) (n=26851272398708896 in b10)

Persist List

Multiplicative persistence is a complex term but a simple concept. Take a number, multiply its digits, repeat. Sooner or later the result is a single digit:

25 → 2 x 5 = 10 → 1 x 0 = 0 (mp=2)
39 → 3 x 9 = 27 → 2 x 7 = 14 → 1 x 4 = 4 (mp=3)

So 25 has a multiplicative persistence of 2 and 39 a multiplicative persistence of 3. Each is the smallest number with that m.p. in base-10. Further records are set by these numbers:

77 → 49 → 36 → 18 → 8 (mp=4)
679 → 378 → 168 → 48 → 32 → 6 (mp=5)
6788 → 2688 → 768 → 336 → 54 → 20 → 0 (mp=6)
68889 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (mp=7)
2677889 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (mp=8)
26888999 → 4478976 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (mp=9)
3778888999 → 438939648 → 4478976 → 338688 → 27648 → 2688 → 768 → 336 → 54 → 20 → 0 (mp=10)

Now here’s base-9:

25[b=9] → 11 → 1 (mp=2)
38[b=9] → 26 → 13 → 3 (mp=3)
57[b=9] → 38 → 26 → 13 → 3 (mp=4)
477[b=9] → 237 → 46 → 26 → 13 → 3 (mp=5)
45788[b=9] → 13255 → 176 → 46 → 26 → 13 → 3 (mp=6)
2577777[b=9] → 275484 → 13255 → 176 → 46 → 26 → 13 → 3 (mp=7)

And base-11:

26[b=11] → 11 → 1 (mp=2)
3A[b=11] → 28 → 15 → 5 (mp=3)
69[b=11] → 4A → 37 → 1A → A (=10b=10) (mp=4)
269[b=11] → 99 → 74 → 26 → 11 → 1 (mp=5)
3579[b=11] → 78A → 46A → 1A9 → 82 → 15 → 5 (mp=6)
26778[b=11] → 3597 → 78A → 46A → 1A9 → 82 → 15 → 5 (mp=7)
47788A[b=11] → 86277 → 3597 → 78A → 46A → 1A9 → 82 → 15 → 5 (mp=8)
67899AAA[b=11] → 143A9869 → 299596 → 2A954 → 2783 → 286 → 88 → 59 → 41 → 4 (mp=9)
77777889999[b=11] → 2AA174996A → 143A9869 → 299596 → 2A954 → 2783 → 286 → 88 → 59 → 41 → 4 (mp=10)

I was also interested in the narcissism of multiplicative persistence. That is, are any numbers equal to the sum of the numbers created while calculating their multiplicative persistence? Yes:

86 = (8 x 6 = 48) + (4 x 8 = 32) + (3 x 2 = 6)

I haven’t found any more in base-10 (apart from the trivial 0 to 9) and can’t prove that this is the only one. Base-9 offers this:

78[b=9] = 62 + 13 + 3

I can’t find any at all in base-11, but here are base-12 and base-27:

57[b=12] = 2B + 1A + A
A8[b=12] = 68 + 40 + 0

4[23][b=27] = 3B + 16 + 6
7[24][b=27] = 66 + 19 + 9
A[18][b=27] = 6[18] + 40 + 0
[26][24][b=27] = [23]3 + 2F + 13 + 3
[26][23][26][b=27] = [21]8[23] + 583 + 4C + 1[21] + [21]

But the richest base I’ve found so far is base-108, with fourteen narcissistic multiplicative-persistence sums:

4[92][b=108] = 3[44] + 1[24] + [24]
5[63][b=108] = 2[99] + 1[90] + [90]
7[96][b=108] = 6[24] + 1[36] + [36]
A[72][b=108] = 6[72] + 40 + 0
[19][81][b=108] = E[27] + 3[54] + 1[54] + [54]
[26][96][b=108] = [23]C + 2[60] + 1C + C
[35][81][b=108] = [26][27] + 6[54] + 30 + 0
[37][55][b=108] = [18][91] + F[18] + 2[54] + 10 + 0
[73][60][b=108] = [40][60] + [22][24] + 4[96] + 3[60] + 1[72] + [72]
[107][66][b=108] = [65][42] + [25][30] + 6[102] + 5[72] + 3[36] + 10 + 0
[71][84][b=108] = [55][24] + C[24] + 2[72] + 1[36] + [36]
[107][99][b=108] = [98]9 + 8[18] + 1[36] + [36]
5[92][96][b=108] = 3[84][96] + 280 + 0
8[107][100][b=108] = 7[36][64] + 1[41][36] + D[72] + 8[72] + 5[36] + 1[72] + [72]


Update (10/ii/14): The best now is base-180 with eighteen multiplicative-persistence sums.

5[105][b=180] = 2[165] + 1[150] + [150]
7[118][b=180] = 4[106] + 2[64] + [128]
7[160][b=180] = 6[40] + 1[60] + [60]
8[108][b=180] = 4[144] + 3[36] + [108]
A[120][b=180] = 6[120] + 40 + 0 (s=5)
[19][135][b=180] = E[45] + 3[90] + 1[90] + [90]
[21][108][b=180] = C[108] + 7[36] + 1[72] + [72]
[26][160][b=180] = [23][20] + 2[100] + 1[20] + [20]
[31][98][b=180] = [16][158] + E8 + [112]
[35][135][b=180] = [26][45] + 6[90] + 30 + 0 (s=10)
[44][96][b=180] = [23][84] + A[132] + 7[60] + 2[60] + [120]
[71][140][b=180] = [55][40] + C[40] + 2[120] + 1[60] + [60]
[73][100][b=180] = [40][100] + [22][40] + 4[160] + 3[100] + 1[120] + [120]
[107][110][b=180] = [65][70] + [25][50] + 6[170] + 5[120] + 3[60] + 10 + 0
[107][165][b=180] = [98]F + 8[30] + 1[60] + [60] (s=15)
[172][132][b=180] = [126][24] + [16][144] + C[144] + 9[108] + 5[72] + 20 + 0
5[173][145][b=180] = 3[156][145] + 2[17]0 + 0
E[170][120][b=180] = 8[146][120] + 4[58][120] + [154][120] + [102][120] + [68]0 + 0