Message from Mater

As any recreational mathematician kno, the Ulam spiral shows the prime numbers on a spiral grid of integers. Here’s a Ulam spiral with 1 represented in blue and 2, 3, 5, 7… as white blocks spiralling anti-clockwise from the right of 1:

The Ulam spiral of prime numbers


Ulam spiral at higher resolution


I like the Ulam spiral and whenever I’m looking at new number sequences I like to Ulamize it, that is, display it on a spiral grid of integers. Sometimes the result looks good, sometimes it doesn’t. But I’ve always wondered something beforehand: will this be the spiral where I see a message appear? That is, will I see a message from Mater Mathematica, Mother Maths, the omniregnant goddess of mathematics? Is there an image or text embedded in some obscure number sequence, revealed when the sequence is Ulamized and proving that there’s divine intelligence and design behind the universe? Maybe the image of a pantocratic cat will appear. Or a text in Latin or Sanskrit or some other suitably century-sanctified language.

That’s what I wonder. I don’t wonder it seriously, of course, but I do wonder it. But until 22nd March 2025 I’d never seen any Ulam-ish spiral that looked remotely like a message. But 22nd May is the day I Ulamed some continued fractions. And I saw something that did look a little like a message. Like text, that is. But I might need to explain continued fractions first. What are they? They’re a fascinating and beautiful way of representing both rational and irrational numbers. The continued fractions for rational numbers look like this in expanded and compact format:

5/3 = 1 + 1/(1 + ½) = 1 + ⅔
5/3 = [1; 1, 2]

19/7 = 2 + 1/(1 + 1/(2 + ½)) = 2 + 4/7
19/7 = [2; 1, 2, 2]

2/3 = 0 + 1/(1 + 1/2)
2/3 = [0; 1, 2] (compare 5/3 above)

3/5 = 0 + 1/(1 + 1/(1 + 1/2))
3/5 = [0; 1, 1, 2]

5/7 = 0 + 1/(1 + 1/(2 + 1/2))
5/7 = [0; 1, 2, 2] (compare 19/7 above)

13/17 = 0 + 1/(1 + 1/(3 + 1/4))
13/17 = [0; 1, 3, 4]

30/67 = 0 + 1/(2 + 1/(4 + 1/(3 + ½)))
30/67 = [0; 2, 4, 3, 2]

The continued fractions of irrational numbers are different. Most importantly, they never end. For example, here are the infinite continued fractions for φ, √2 and π in expanded and compact format:

φ = 1 + (1/(1 + 1/(1 + 1/(1 + …)))φ = [1; 1]

√2 = 1 + (1/(2 + 1/(2 + 1/(2 + …)))
√2 = [1; 2]

π = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + 1/(1 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + 1/(3 +…))))))))))
π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3…]

As you can see, the continued fraction of π doesn’t fall into a predictable pattern like those for φ and √2. But I’ve already gone into continued fractions further than I need for this post, so let’s return to the continued fractions of rationals. I set up an Ulam spiral to show patterns based on the continued fractions for 1/1, ½, ⅓, ⅔, 1/4, 2/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, 2/6, 3/6… (where the fractions are assigned to 1,2,3… and 2/4 = ½, 2/6 = ⅓ etc). For example, if the continued fraction contains a number higher than 5, you get this spiral:

Spiral for continued fractions containing at least number > 5


With tests for higher and higher numbers in the continued fractions, the spirals start to thin and apparent symbols start to appear in the arms of the spirals:

Spiral for contfrac > 10


Spiral for contfrac > 15


Spiral for contfrac > 20


Spiral for contfrac > 25


Spiral for contfrac > 30


Spiral for contfrac > 35


Spiral for contfrac > 40


Spirals for contfrac > 5..40 (animated at EZgif)


Here are some more of these spirals at increasing magnification:

Spiral for contfrac > 23 (#1)


Spiral for contfrac > 23 (#2)


Spiral for contfrac > 23 (#3)


Spiral for contfrac > 13


Spiral for contfrac > 15 (off-center)


Spiral for contfrac > 23 (off-center)


And here are some of the symbols picked out in blue:

Spiral for contfrac > 15 (blue symbols)


Spiral for contfrac > 23 (blue symbols)


But they’re not really symbols, of course. They’re quasi-symbols, artefacts of the Ulamization of a simple test on continued fractions. Still, they’re the closest I’ve got so far to a message from Mater Mathematica.

In 10 Words: Im-Precise

I was looking at the best rational approximations for π when I was puzzled for a moment or two by the way the precision of digits didn’t always improve:

22/7 →
3.1428571... = 22/7 (precision = 3 digits)
3.1415926... = π
333/106 →
3.141509433... = 333/106 (pr=5)
3.141592653... = π
355/113 →
3.14159292035... = 355/113 (pr=7)
3.14159265358... = π
103993/33102 →
3.14159265301190... (pr=10)
3.14159265358979... = π
104348/33215 →
3.14159265392142... (pr=10)
3.14159265358979... = π
208341/66317 →
3.14159265346743... (pr=10)
3.14159265358979... = π
312689/99532 →
3.14159265361893... (pr=10)
3.14159265358979... = π
833719/265381 →
3.1415926535810777... (pr=12)
3.1415926535897932... = π
1146408/364913 →
3.141592653591403... (pr=11)
3.141592653589793... = π
4272943/1360120 →
3.14159265358938917... (pr=13)
3.14159265358979323... = π
5419351/1725033 →
3.14159265358981538... (pr=13)
3.14159265358979323... = π
80143857/25510582 →
3.1415926535897926593... (pr=15)
3.1415926535897932384... = π
165707065/52746197 →
3.14159265358979340254... (pr=16)
3.14159265358979323846... = π
245850922/78256779 →
3.14159265358979316028... (pr=16)
3.14159265358979323846... = π
411557987/131002976 →
3.141592653589793257826... (pr=17)
3.141592653589793238462... = π
1068966896/340262731 →
3.1415926535897932353925... (pr=18)
3.1415926535897932384626... = π
2549491779/811528438 →
3.1415926535897932390140... (pr=18)
3.1415926535897932384626... = π
6167950454/1963319607 →
3.14159265358979323838637... (pr=19)
3.14159265358979323846264... = π
14885392687/4738167652 →
3.141592653589793238493875... (pr=20)
3.141592653589793238462643... = π


But it was my precision that was wrong, of course. I wasn’t thinking about digits precisely enough. One approximation can be closer to π with fewer precise digits than another (e.g. 3.14201… is closer to π than 3.14101…). The same applies in binary, but there the precision tends to increase much more obviously:

22/7 →
3.1428571... = 22/7 in base 10 (pr=3)
3.1415926... = π in base 10
11.0010010010010... = 22/7 in base 2 (pr=9)
11.0010010000111... = π in base 2
333/106 →
3.141509433... = 333/106 in b10 (pr=5)
3.141592653... = π in b10
11.001001000011100111... = 333/106 in b2 (pr=14)
11.001001000011111101... = π in b2
355/113 →
3.14159292035... (pr=7)
3.14159265358... = π
11.00100100001111110110111100... = 355/113 in b2 (pr=22)
11.00100100001111110110101010... = π in b2
103993/33102 →
3.14159265301190... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100001100... (pr=29)
11.001001000011111101101010100010001... = π
104348/33215 →
3.14159265392142... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100010011111... (pr=32)
11.001001000011111101101010100010001000... = π
208341/66317 →
3.14159265346743... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100001111... (pr=29)
11.001001000011111101101010100010001... = π
312689/99532 →
3.14159265361893... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100010001010010... (pr=35)
11.001001000011111101101010100010001000010... = π
833719/265381 →
3.1415926535810777... (pr=12)
3.1415926535897932... = π
11.0010010000111111011010101000100001111... (pr=33)
11.0010010000111111011010101000100010000... = π
1146408/364913 →
3.141592653591403... (pr=11)
3.141592653589793... = π
11.0010010000111111011010101000100010000111011... (pr=39)
11.0010010000111111011010101000100010000101101... = π
4272943/1360120 →
3.14159265358938917... (pr=13)
3.14159265358979323... = π
11.001001000011111101101010100010001000010100110... (pr=41)
11.001001000011111101101010100010001000010110100... = π
5419351/1725033 →
3.14159265358981538... (pr=13)
3.14159265358979323... = π
11.0010010000111111011010101000100010000101101010010... (pr=45)
11.0010010000111111011010101000100010000101101000110... = π
80143857/25510582 →
3.1415926535897926593... (pr=15)
3.1415926535897932384... = π
11.0010010000111111011010101000100010000101101000101101... (pr=48)
11.0010010000111111011010101000100010000101101000110000... = π
165707065/52746197 →
3.14159265358979340254... (pr=16)
3.14159265358979323846... = π
11.00100100001111110110101010001000100001011010001100010100... (pr=52)
11.00100100001111110110101010001000100001011010001100001000... = π
245850922/78256779 →
3.14159265358979316028... (pr=16)
3.14159265358979323846... = π
11.001001000011111101101010100010001000010110100011000000110... (pr=53)
11.001001000011111101101010100010001000010110100011000010001... = π
411557987/131002976 →
3.141592653589793257826... (pr=17)
3.141592653589793238462... = π
11.00100100001111110110101010001000100001011010001100001010001... (pr=55)
11.00100100001111110110101010001000100001011010001100001000110... = π
1068966896/340262731 →
3.1415926535897932353925... (pr=18)
3.1415926535897932384626... = π
11.00100100001111110110101010001000100001011010001100001000100110... (pr=58)
11.00100100001111110110101010001000100001011010001100001000110100... = π
2549491779/811528438 →
3.1415926535897932390140... (pr=18)
3.1415926535897932384626... = π
11.00100100001111110110101010001000100001011010001100001000110111010... (pr=61)
11.00100100001111110110101010001000100001011010001100001000110100110... = π
6167950454/1963319607 →
3.14159265358979323838637... (pr=19)
3.14159265358979323846264... = π
11.0010010000111111011010101000100010000101101000110000100011010001101... (pr=63)
11.0010010000111111011010101000100010000101101000110000100011010011000... = π
14885392687/4738167652 →
3.141592653589793238493875... (pr=20)
3.141592653589793238462643... = π
11.001001000011111101101010100010001000010110100011000010001101001110100... (pr=65)
11.001001000011111101101010100010001000010110100011000010001101001100010... = π


Post-Performative Post-Scriptum…

The title of this terato-toxic post is a maximal mash-up (wow) of two well-known toxico-teratic tropes:

• “There are 10 kinds of people in the world. Those who understand binary and those who don’t.”
• Sam Goldwyn’s malapropism: “In two words: im-possible!”

Harcissism (Caveat Lector!)

Pre-previously on Overlord-of-the-Über-Feral, I looked at patterns like these, where sums of consecutive integers, sum(n1..n2), yield a number, n1n2, whose digits reproduce those of n1 and n2:


15 = sum(1..5)
27 = sum(2..7)
429 = sum(4..29)
1353 = sum(13..53)
1863 = sum(18..63)


Numbers like those can be called narcissistic, because in a sense they gaze back at themselves. Now I’ve looked at sums of consecutive reciprocals and found comparable narcissistic patterns:


0.45 = sum(1/4..1/5)
1.683... = sum(1/16..1/83)
0.361517... = sum(1/361..1/517)
3.61316... = sum(1/36..1/1316)
4.22847... = sum(1/42..1/2847)
3.177592... = sum(1/317..1/7592)
8.30288... = sum(1/8..1/30288)


Because the sum of consecutive reciprocals, 1/1 + 1/2 + 1/3 + 1/4…, is called the harmonic series, I’ve decided to call these numbers harcissistic = harmonic + narcissistic.


Post-Performative Post-Scriptum

Why did I put “Caveat Lector” (meaning “let the reader beware”) in the title of this post? Because it’s likely that some (or even most) fluent readers of English will misread the preceding word, “Harcissism”, as “Narcissism”.


Previously Pre-Posted (Please Peruse)

Fair Pairs — looking at patterns like 1353 = sum(13..53)

A Pox on Poetry

From The Ultimate Christmas Cracker (2019), compiled by John Julius Norwich:

How beautiful, I have often thought, would be the names of many of our vilest diseases, were it not for their disagreeable associations. My old friend Jenny Fraser sent me this admirable illustration of the fact by J.C. Squire:

So forth then rode Sir Erysipelas
From good Lord Goitre’s castle, with the steed
Loose on the rein: and as he rode he mused
On Knights and Ladies dead: Sir Scrofula,
Sciatica, he of Glanders, and his friend,
Stout Sir Colitis out of Aquitaine,
And Impetigo, proudest of them all,
Who lived and died for blind Queen Cholera’s sake:
Anthrax, who dwelt in the enchanted wood
With those princesses three, tall, pale and dumb,
And beautiful, whose names were Music’s self,
Anaemia, Influenza, Eczema.
And then once more the incredible dream came back,
How long ago upon the fabulous Shores
Of far Lumbago, all of a summer’s Day,
He and the maid Neuralgia, they twain,
Lay in a flower-crowned mead, and garlands wove,
Of gout and yellow hydrocephaly,
Dim palsies, and pyrrhoea, and the sweet
Myopia, bluer than the summer Sky:
Agues, both white and red, pied common cold,
Cirrhosis and that wan, faint flower
The shep­herds call dyspepsia. — Gone, all gone:
There came a Knight: he cried ‘Neuralgia!’
And never a voice to answer. Only rang
O’er cliff and battlement and desolate mere
‘Neuralgia!’ in the echoes’ mockery.


Elsewhere Other-Accessible…

J.C. Squire at Wikipedia

Post-Performative Post-Scriptum

nosopoetic (obsolete rare) Producing or causing disease. ← noso- comb. form + ‑poetic comb. form, after Hellenistic Greek νοσοποιός causing illness; compare ancient Greek νοσοποιεῖν to cause illness. — Oxford English Dictionary

Fract-L Geometry

Suppose you set up an L, i.e. a vertical and horizontal line, representing the x,y coordinates between 0 and 1. Next, find the fractional pairs x = 1/2, 1/3, 2/3, 1/4, 2/4…, y = 1/2, 1/3, 2/3, 1/4, 2/4… and mark the point (x,y). That is, find the point, say, 1/5 of the way along the x-line, then the points 1/5, 2/5, 3/5 and 4/5 along the y-line, marking the points (1/5, 1/5), (1/5, 2/5), (1/5, 3/5), (1/5, 4/5). Then find (2/5, 1/5), (2/5, 2/5), (2/5, 3/5), (2/5, 4/5) and so on. Some interesting patterns appear in what I call a Frac-L (pronounced “frackle”) or Fract-L:

Frac-L for 1/2 to 21/22


Frac-L for 1/2 to 48/49


Frac-L for 1/2 to 75/76


Frac-L for 1/2 to 102/103


Frac-L for 1/2 to 102/103 (animated)


If the (x,y) point is first red, then becomes different colors as it is repeatedly found, you get these patterns:

Frac-L for 1/2 to 48/49 (color)


Frac-L for 1/2 to 75/79 (color)


Frac-L for 1/2 to 102/103 (color) (animated)


Now try polygonal numbers. The triangular numbers are 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78…, so you’re finding the fractional pairs, say, (1/21, 1/21), (1/21, 3/21, (1/21, 6/21), (1/21, 10/21), (1/21, 15/21), then (3/21, 1/21), (3/21, 3/21, (3/21, 6/21), (3/21, 10/21), (3/21, 15/21), and so on:

Frac-L for triangular fractions


The frac-L for square numbers (1, 4, 9, 16, 25, 36, 49, 64, 81, 100…) is almost identical:

Frac-L for square fractions, e.g. (1/16, 1/16), (1/16, 4/16), (1/16, 9/16)…


So is the frac-L for pentagonal numbers (1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330…):

Frac-L for pentagonal fractions, e.g. (1/35, 5/35), (1/35, 12/35), (1/35,22/35)…


Here are frac-Ls for tetrahedral and square-pyramidal numbers:

Frac-L for tetrahedral fractions


Frac-L for square pyramidal fractions


But what about prime numbers (skipping 2)? Here the fractional pairs are, say, (1/17, 1/17), (1/17, 3/17), (1/17, 5/17), (1/17, 7/17), (1/17, 11/17), (1/17, 13/17), then (3/17, 1/17), (3/17, 3/17), (3/17, 5/17), (3/17, 7/17), (3/17, 11/17), (3/17, 13/17), and so on:

Frac-L for 1/3 to 73/79 (prime fractions)


Frac-L for 1/3 to 223/227


Frac-L for 1/3 to 307/331


Frac-L for 1/3 to 307/331 (animated)


Frac-L for 1/3 to 73/79 (color) (prime fractions)


Frac-L for 1/3 to 223/227 (color)


Frac-L for 1/3 to 307/331 (color)


Frac-L for 1/3 to 307/331 (color) (animated)


And finally (for now), a frac-L for Fibonnaci numbers, where the fractional pairs are, say, (1/13, /13), (1/13, 2/13), (1/13, 3/13), (1/13, 5/13), (1/13, 8/13), then (2/13, /13), (2/13, 2/13), (2/13, 3/13), (2/13, 5/13), (2/13, 8/13), and so on:

Frac-L for Fibonacci fractions to 14930352/2178309 = fibonacci(36)/fibonacci(37)


Give It Some Pivot

Hydrology, geology, acoustics and more combine in one magnificently muddled mixed metaphor:

When [Emily] Pankhurst ordered her followers to stop bombing the British state and start helping to arm it for the war effort [after 1914], it left some of the most radicalized to fall into “a feminist-fascist estuary formed in the crater generated by Mrs Pankhurst’s pivot from law-breaking insurgency to conformist cheerleading”. — ‘It’s a scary time’: Sophie Lewis on the ‘enemy feminisms’ that enable the far right, The Guardian, 21ii25

Among the baffling questions raised by the metaphor is this: Why “estuary”? It would make sense to say “[fall into] a stagnant and stinking feminist-fascist pool formed in the crater…” But estuaries aren’t stagnant and craters don’t create estuaries anyway. Rivers do when they flow into a sea or lake. What would the river and sea represent?

I’ve no idea. And I would find it very difficult to match that mixed metaphor without making it seemed contrived or confected. Mixed metaphors are a zen thing: for best effect, they’ve got to flow from the fingertips or float off the tongue without effort, welling up from a bottomless crater of bollocks like a meth-smoking bull in a china-shop riding a feral tsunami of unhinged imagery and clashing comparativization.

hail(Satan)!

It’s a very simple function that raises a very difficult question. An unanswered question, in fact. Take any whole number. If it’s odd, multiply it by 3 and add 1. If it’s even, divide it by 2. Repeat until you reach 1. That’s the hailstone function, because the numbers rise and fall like hailstones being formed in a cloud. Here are some examples:

5 → 16 → 8 → 4 → 2 → 1 (steps=5)


3 → 10 → 5 → 16 → 8 → 4 → 2 → 1 (st=7)


7 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 (st=16)

Graph for hail(7) = 16 (mx=52)


25 → 76 → 38 → 19 → 58 → 29 → 88 → 44 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 →
20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 (st=23)

Graph for hail(25) = 23 (mx=88)


But is this function truly a hailstone function? That is, does every number fall finally to earth and reach 1? So far, for every number tested, the answer has been yes. But do all numbers reach 1? The Collatz conjecture says they do. But no-one can prove it. Or disprove it. All it would take is one number failing to fall to earth. Mathematicians don’t think there is one, but numbers can take a surprising length of time to get to the ground. Here’s 27:

27 → 82 → 41 → 124 → 62 → 31 → 94 → 47 → 142 → 71 → 214 → 107 → 322 → 161 → 484 → 242 → 121 → 364 → 182 → 91 → 274 → 137 → 412 → 206 → 103 → 310 → 155 → 466 → 233 → 700 → 350 → 175 → 526 → 263 → 790 → 395 → 1186 → 593 → 1780 → 890 → 445 → 1336 → 668 → 334 → 167 → 502 → 251 → 754 → 377 → 1132 → 566 → 283 → 850 → 425 → 1276 → 638 → 319 → 958 → 479 → 1438 → 719 → 2158 → 1079 → 3238 → 1619 → 4858 → 2429 → 7288 → 3644 → 1822 → 911 → 2734 → 1367 → 4102 → 2051 → 6154 → 3077 → 9232 → 4616 → 2308 → 1154 → 577 → 1732 → 866 → 433 → 1300 → 650 → 325 → 976 → 488 → 244 → 122 → 61 → 184 → 92 → 46 → 23 → 70 → 35 → 106 → 53 → 160 → 80 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 (st=111)

Graph for hail(27) = 111 (mx=9232)


27 takes 111 steps to reach 1. And the 111 made me think of another question. If the function hail(n) returns the number of steps required for n to reach 1, then hail(27) = 111. But what about hail(n) = 666? That is, what is the first number that requires 666 steps to reach 1? I say “first number”, because one very big number is guaranteed to take 666 steps:

666 = hail(306,180,206,916,083,902,309,240,650,087,602,475,282,639,486,413,866,622,
577,088,471,913,520,022,894,784,390,350,900,738,050,555,138,105,234,536,857,820,245,
071,373,614,031,482,942,161,565,170,086,143,298,589,738,273,508,330,367,307,539,078,
392,896,587,187,265,470,464)

Put another way, 666 = hail(2^666), because for any power of 2, hail(2^p) = p. But is there a smaller number, which I’ll call satan, for which hail(satan) = 666? Here’s a tantalizing taster of the task:

hail(27) = 111 (mx=9232)
hail(30262) = 222 (mx=2484916)
hail(164521) = 333 (mx=21933016)
hail(886953) = 444 (mx=52483285312)
hail(5143151) = 555 (mx=125218704148)
hail(satan) = 666 (mx=?)


But what is satan? Before I answer, here are some more graphs for interesting hail(n):

hail(231) = 127 (mx=9232)


hail(327) = 143 (mx=9232)


hail(703) = 170 (mx=250504)


hail(871) = 178 (mx=190996)


hail(2223) = 182 (mx=250504)


hail(3711) = 237 (mx=481624)


hail(35655) = 323 (mx=41163712)


hail(142587) = 374 (mx=593279152)


Now I’ll answer the question. If satan = 26597116, then hail(satan) = 666:

hail(26597116) = 666 (mx=15208728208)


Therefore:

hail(satan)! =
1,010,632,056,840,781,493,390,822,708,129,876,451,757,582,398,324,145,411,
340,420,807,357,413,802,103,697,022,989,202,806,801,491,012,040,989,802,
203,557,527,039,339,704,057,130,729,302,834,542,423,840,165,856,428,740,
661,530,297,972,410,682,828,699,397,176,884,342,513,509,493,787,480,774,
903,493,389,255,262,878,341,761,883,261,899,426,484,944,657,161,693,131,
380,311,117,619,573,051,526,423,320,389,641,805,410,816,067,607,893,067,
483,259,816,815,364,609,828,668,662,748,110,385,603,657,973,284,604,842,
078,094,141,556,427,708,745,345,100,598,829,488,472,505,949,071,967,727,
270,911,965,060,885,209,294,340,665,506,480,226,426,083,357,901,503,097,
781,140,832,497,013,738,079,112,777,615,719,116,203,317,542,199,999,489,
227,144,752,667,085,796,752,482,688,850,461,263,732,284,539,176,142,365,
823,973,696,764,537,603,278,769,322,286,708,855,475,069,835,681,643,710,
846,140,569,769,330,065,775,414,413,083,501,043,659,572,299,454,446,517,
242,824,002,140,555,140,464,296,291,001,901,438,414,675,730,552,964,914,
569,269,734,038,500,764,140,551,143,642,836,128,613,304,734,147,348,086,
095,123,859,660,926,788,460,671,181,469,216,252,213,374,650,499,557,831,
741,950,594,827,147,225,699,896,414,088,694,251,261,045,196,672,567,495,
532,228,826,719,381,606,116,974,003,112,642,111,561,332,573,503,212,960,
729,711,781,993,903,877,416,394,381,718,464,765,527,575,014,252,129,040,
283,236,963,922,624,344,456,975,024,058,167,368,431,809,068,544,577,258,
472,983,979,437,818,072,648,213,608,650,098,749,369,761,056,961,203,791,
265,363,665,664,696,802,245,199,962,040,041,544,438,210,327,210,476,982,
203,348,458,596,093,079,296,569,561,267,409,473,914,124,132,102,055,811,
493,736,199,668,788,534,872,321,705,360,511,305,248,710,796,441,479,213,
354,542,583,576,076,596,250,213,454,667,968,837,996,023,273,163,069,094,
700,429,467,106,663,925,419,581,193,136,339,860,545,658,673,623,955,231,
932,399,404,809,404,108,767,232,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000 = 666!


Here’s a question I haven’t answered: if satanic numbers are those n satisfying hail(n) = 666, how many satanic numbers are there? We’ve already seen two of them: 666 = hail(2^666) = hail(26597116). But how many more are there? Not infinitely many, because for n > 2^666, hail(n) > 666. In fact, after satan = 26597116, the next three satanic numbers arrive very quickly:

hail(satan+0) = 666 = hail(26597116)
hail(satan+1) = 666 = hail(26597117)
hail(satan+2) = 666 = hail(26597118)
hail(satan+3) = 666 = hail(26597119)

hail(satan-1) = 180 = hail(26597115)
hail(satan+4) = 180 = hail(26597120)


So there are four consecutive satanic numbers. But it isn’t unusual for a run of consecutive numbers to have the same hail(). Here’s a graph of the values of hail(n) for n = 1,2,3… (running left-to-right, down-up, with 1,2,3… in the lower lefthand corner). When n is divisible by 10, hail(n) is represented in red; when n is odd and divisible by 5, hail(n) is green. Note how many runs of identical hail(n) there are:

Graph for hail(n)


Here are successive records for runs of identical hail(n):

hail(12..13) = 9 (run=2)
hail(28..30) = 18 (run=3)
hail(98..102) = 25 (r=5)
hail(386..391) = 120 (r=6)
hail(943..949) = 36 (r=7)
hail(1494..1501) = 47 (r=8)
hail(1680..1688) = 42 (r=9)
hail(2987..3000) = 48 (r=14)
hail(7083..7099) = 57 (r=17)
hail(57346..57370) = 78 (r=25)
hail(252548..252574) = 181 (r=27)
hail(331778..331806) = 91 (r=29)
hail(524289..524318) = 102 (r=30)
hail(596310..596349) = 97 (r=40)


Finally, here’s Poland’s finest putting the function of 26597116 to music:

“Hail Satan!” by Dopelord


Elsewhere Other-Accessible…

Dopelord at Bandcamp