Primal Pellicles

Numbers have thin skins. And they’re easily replaced. Take 71624133. Here it is permuting its pellicles:

71624133 in base 10 = 100010001001110010111000101 in base 2 = 11222202212211200 in b3 = 10101032113011 in b4 = 121313433013 in b5 = 11035053113 in b6 = 1526536500 in b7 = 421162705 in b8 = 158685750 in b9 = 374802A9 in b11 = 1BBA1199 in b12 = 11AB9B59 in b13 = 9726137 in b14 = 644BE73 in b15 = F3855B7 in b16

But if digits are the skin of 71624133, what are its bones? Well, you could say the skeleton of a number, something that doesn’t change from base to base, is its prime factorization:

71624133 = 32 × 72 × 162413

But the primes themselves are numbers, so they’re wearing pellicles too. And it turns out that, in base 10, the pellicles of the prime factors of 71624133 match the pellicle of 71624133 itself:

71624133 = 32.72.162413

Here’s a list of primal pellicles in base 10:

735 = 3.5.72
3792 = 24.3.79
1341275 = 52.13.4127
13115375 = 53.7.13.1153
22940075 = 52.229.4007
29373375 = 3.53.29.37.73
71624133 = 32.72.162413
311997175 = 52.7.172.31.199
319953792 = 27.3.53.79.199
1019127375 = 32.53.7.127.1019
1147983375 = 3.53.7.11.83.479
1734009275 = 52.173.400927
5581625072 = 24.5581.62507
7350032375 = 53.7.23.73.5003
17370159615 = 34.5.17.59.61.701
33061224492 = 22.33.306122449
103375535837 = 72.37.103.553583
171167303912 = 23.11.172.6730391
319383665913 = 3.133.19.383.6659
533671737975 = 34.52.17.53.367.797
2118067737975 = 32.52.7.79.211.80677
3111368374257 = 3.112.132.683.74257
3216177757191 = 3.73.191.757.21617
3740437158475 = 52.37.4043715847
3977292332775 = 3.52.292.233.277.977
4417149692375 = 53.7.23.4969.44171
7459655393232 = 24.32.72.23.45965539
7699132721175 = 3.52.72.27211.76991
7973529228735 = 3.5.7.972.2287.3529
10771673522535 = 34.5.67.71.107.52253

You can find them at the Online Encyclopedia of Integer Sequences under A121342, “Composite numbers that are a concatenation of their distinct prime divisors in some order.” But what about pairs of primal pellicles, that is, pairs of numbers where the prime factors of each form the pellicle of the other?

35 = 5.775 = 3.52
1275 = 3.52.173175 = 52.127
131715 = 32.5.2927329275 = 52.13171
3199767 = 3.359.297135932971 = 3.19.67.972
14931092 = 22.11.61.5563116155632 = 24.3.109.1492

And here are a few primal pellicles I’ve found in other bases:

Primal Pellicles in Base 2

1111011011110 = 10.1110.110110111 in b2 = 7902 = 2.32.439 in b10
1110001100110111 = 1110.10111.100011001 in b2 = 58167 = 32.23.281 in b10
1111011011011110 = 10.1110.110110110111 in b2 = 63198 = 2.32.3511 in b10
11101001100001101 = 1110.101.101001100001 in b2 = 119565 = 32.5.2657 in b10
1111011011011011110 = 10.1110.110110110110111 in b2 = 505566 = 2.32.28087 in b10
1111011111101111011 = 1110.1011.10111.11011111 in b2 = 507771 = 32.11.23.223 in b10


Primal Pellicles in Base 3

121022 = 210.12.102 in b3 = 440 = 23.5.11 in b10
212212 = 22.21.212 in b3 = 644 = 22.7.23 in b10
20110112 = 210.201.1011 in b3 = 4712 = 23.19.31 in b10
21110110 = 10.212.1101 in b3 = 5439 = 3.72.37 in b10
121111101 = 122.111.1101 in b3 = 12025 = 52.13.37 in b10
222112121 = 22.21.221121 in b3 = 19348 = 22.7.691 in b10
2202122021 = 22.2021.22021 in b3 = 54412 = 22.61.223 in b10
120212201221 = 2.122.21.201.1202 in b3 = 312550 = 2.52.7.19.47 in b10


Primal Pellicles in Base 7

2525 = 2.52.25 in b7 = 950 = 2.52.19 in b10
3210 = 2.34.10 in b7 = 1134 = 2.34.7 in b10
5252 = 2.52.52 in b7 = 1850 = 2.52.37 in b10
332616 = 33.16.326 in b7 = 58617 = 33.13.167 in b10
336045 = 32.5.3604 in b7 = 59715 = 32.5.1327 in b10
2251635 = 22.3.5.16.252 in b7 = 281580 = 22.3.5.13.192 in b10


Primal Pellicles in Base 11

253 = 22.3.52 in b11 = 300 = 22.3.52 in b10
732 = 2.32.72 in b11 = 882 = 2.32.72 in b10
2123 = 23.33.12 in b11 = 2808 = 23.33.13 in b10
3432 = 25.3.43 in b11 = 4512 = 25.3.47 in b10
3710 = 32.72.10 in b11 = 4851 = 32.72.11 in b10
72252 = 23.72.225 in b11 = 105448 = 23.72.269 in b10


Primal Pellicles in Base 15

275 = 24.5.7 in b15 = 560 = 24.5.7 in b10
2D5 = 2.52.D in b15 = 650 = 2.52.13 in b10
2CD5 = 2.52.CD in b15 = 9650 = 2.52.193 in b10
7BE3 = 3.72.BE in b15 = 26313 = 3.72.179 in b10
21285 = 24.52.128 in b15 = 105200 = 24.52.263 in b10

Summer-Time Twos

I wondered how often the digits of n2 appeared in sum(n1,n2). For example:

17 → 117 = sum(9,17)
20200 = sum(5,20); 204,4; 207,3; 209,2 (c=4)

As I looked at higher n2, I found that the 2-views continued:

63 → 363 = sum(58,63); 638,53; 1638,28; 1763,23; 1863,18 (c=5)
88 → 1288 = sum(73,88); 2788,48; 2881,46; 3388,33; 3880,9; 3888,8 (c=6)
20020009 = sum(14,200); 20022,13; 20034,12; 20045,11; 20055,10; 20064,9;
200
72,8; 20079,7; 20085,6; 20090,5; 20094,4; 20097,3; 20099,2 (c=13)
558 → 39558 = sum(483,558); 55833,448; 95583,348; 105558,318; 125580,247; 126558,243; 143558,158; 152558,83; 155583,28; 155808,18; 155825,17; 155841,16; 155856,15; 155870,14; 155883,13; 155895,12 (c=16)
20002000010 = sum(45,2000); 2000054,44; 2000097,43; 2000139,42; 2000180,41; 2000220,40; 2000259,39; 2000297,38; 2000334,37; 2000370,36; 2000405,35; 2000439,34; 2000472,33; 2000504,32; 2000535,31; 2000565,30;
2000594,29; 2000622,28; 2000649,27; 2000675,26; 2000700,25; 2000724,24; 2000747,23; 2000769,22; 2000790,21; 2000810,20; 2000829,19; 2000847,18; 2000864,17; 2000880,16; 2000895,15; 2000909,14; 2000922,13; 2000934,
12; 2000945,11; 2000955,10; 2000964,9; 2000972,8; 2000979,7; 2000985,6; 2000990,5; 2000994,4; 2000997,3; 2000999,2 (c=44)

But what about other bases?

Base 9

15 in b9 → 115 = sum(5,15) (n=14 in b10) (c=1)
18 in b9 → 118 = sum(11,17); 180,1 (n=17 in b10) (c=2)
20 in b9 → 203 = sum(4,18); 206,3; 208,2 (n=18 in b10) (c=3)
45 in b9 → 445 = sum(32,41); 745,25; 1045,15; 1145,5 (n=41 in b10) (c=4)
55 in b9 → 555 = sum(41,50); 1055,35; 1355,25; 1555,15; 1655,5 (n=50 in b10) (c=5)
65 in b9 → 665 = sum(50,59); 1265,45; 1665,35; 2065,25; 2265,15; 2365,5 (n=59 in b10) (c=6)
75 in b9 → 775 = sum(59,68); 1475,55; 2075,45; 2475,35; 2750,26; 2775,25; 3075,15; 3175,5 (n=68 in b10) (c=8)
85 in b9 → 885 = sum(68,77); 1685,65; 2385,55; 2885,45; 3385,35; 3685,25; 3853,17; 3885,15; 4085,5 (n=77 in b10) (c=9)
200 in b9 → 20003 = sum(13,162); 20016,13; 20028,12; 20040,11; 20050,10; 20058,8; 20066,7; 20073,6; 20078,5; 20083,4; 20086,3; 20088,2 (n=162 in b10) (c=12)
415 in b9 → 13415 = sum(311,338); 25415,345; 36415,315; 41525,302; 46415,275; 55415,245; 63415,215; 64155,212; 70415,175; 75415,145; 80415,115; 83415,75; 85415,45; 86415,15 (n=338 in b10) (c=14)
[…]
2000 in b9 → 2000028 = sum(38,1458); 2000070,41; 2000120,40; 2000158,38; 2000206,37; 2000243,36; 2000278,35; 2000323,34; 2000356,33; 2000388,32; 2000430,31; 2000460,30; 2000488,28; 2000526,27; 2000553,26; 2000578,25; 2000613,24; 2000636,23; 2000658,22; 2000680,21; 2000710,20; 2000728,18; 2000746,17; 2000763,16; 2000778,15; 2000803,14; 2000816,13; 2000828,12; 2000840,11; 2000850,10; 2000858,8; 2000866,7; 2000873,6; 2000878,5; 2000883,4; 2000886,3; 2000888,2 (n=1458 in b10) (c=37)


Base 11

16 in b11 → 116 = sum(6,16) (n=17 in b10) (c=1)
20 in b11 → 201 = sum(5,22); 205,4; 208,3; 20A,2 (n=22 in b10) (c=4)
56 in b11 → 556 = sum(50,61); 956,36; 1156,26; 1356,16; 1456,6 (n=61 in b10) (c=5)
66 in b11 → 666 = sum(61,72); 1066,46; 1466,36; 1669,2A; 1766,26; 1966,16; 1A66,6 (n=72 in b10) (c=7)
86 in b11 → 886 = sum(83,94); 1486,66; 1A86,56; 2486,46; 2886,36; 3086,26; 3286,16; 3386,6 (n=94 in b10) (c=8)
96 in b11 → 996 = sum(94,105); 1696,76; 2296,66; 2896,56; 3296,46; 3696,36; 3996,26; 4096,16; 4196,6 (n=105 in b10) (c=9)
A6 in b11 → AA6 = sum(105,116); 18A6,86; 25A6,76; 31A6,66; 37A6,56; 41A6,46; 45A6,36; 48A6,26; 4AA6,16; 50A6,6 (n=116 in b10) (c=10)
200 in b11 → 1200A = sum(156,242); 20001,15; 20015,14; 20028,13; 2003A,12; 20050,11; 20060,10; 2006A,A; 20078,9; 20085,8; 20091,7; 20097,6; 200A1,5; 200A5,4; 200A8,3; 200AA,2 (n=242 in b10) (c=16)
[…]
A66 in b11 → 1AA66 = sum(1260,1282); A1A66,966; 109A66,946; 182A66,866; 198A66,846; 23A666,786; 253A66,766; 267A66,746; 314A66,666; 326A66,646; 375A66,566; 385A66,546; 416A66,466; 424A66,446; 457A66,366; 463A66,346; 46A666,326; 488A66,266; 492A66,246; 4A6666,186; 4A9A66,166; 501A66,146; 50AA66,66; 510A66,46 (n=1282 in b10) (c=24)
2000 in b11 → 2000005 = sum(52,2662); 2000051,47; 2000097,46; 2000131,45; 2000175,44; 2000208,43; 200024A,42; 2000290,41; 2000320,40; 200035A,3A; 2000398,39; 2000425,38; 2000461,37; 2000497,36; 2000521,35; 2000555,34; 2000588,33; 200060A,32; 2000640,31; 2000670,30; 200069A,2A; 2000718,29; 2000745,28; 2000771,27; 2000797,26; 2000811,25; 2000835,24; 2000858,23; 200087A,22; 20008A0,21; 2000910,20; 200092A,1A; 2000948,19; 2000965,18; 2000981,17; 2000997,16; 2000A01,15; 2000A15,14; 2000A28,13; 2000A3A,12; 2000A50,11; 2000A60,10; 2000A6A,A; 2000A78,9; 2000A85,8; 2000A91,7; 2000A97,6; 2000AA1,5; 2000AA5,4; 2000AA8,3; 2000AAA,2 (n=2662 in b10) (c=51)


Base 3

12 in b3 → 112 = sum(2,12); 120,1 (n=5 in b10) (c=2)
20 in b3 → 120 = sum(4,6); 200,10; 202,2 (n=6 in b10) (c=3)
122 in b3 → 10122 = sum(11,17); 11122,22; 11220,21; 12122,2; 12200,1 (n=17 in b10) (c=5)
1212 in b3 → 121212 = sum(41,50); 1001212,1012; 1101212,212; 1112120,200; 1121212,112; 1201212,12 (n=50 in b10) (c=6)
1222 in b3 → 122222 = sum(44,53); 1101222,1002; 1111222,222; 1112220,221; 1212222,102; 1221222,2; 1222000,1 (n=53 in b10) (c=7)
2000 in b3 → 1112000 = sum(28,54); 1120000,1000; 2000020,21; 2000110,20; 2000122,12; 2000210,11; 2000220,10; 2000222,2 (n=54 in b10) (c=8)
[…]
20000 in b3 → 111120000 = sum(82,162); 111200000,10000; 200000010,111; 200000120,110; 200000222,102; 200001100,101; 200001200,100; 200001222,22; 200002020,21; 200002110,20; 200002122,12; 200002210,11; 200002220,10; 200002222,2 (n=162 in b10) (c=14)


Base 4

13 in b4 → 130 = sum(1,13) (n=7 in b10) (c=1)
20 in b4 → 201 = sum(3,8); 203,2 (n=8 in b10) (c=2)
200 in b4 → 20001 = sum(6,32); 20012,11; 20022,10; 20031,3; 20033,2 (n=32 in b10) (c=5)
2000 in b4 → 2000021 = sum(11,128); 2000103,22; 2000130,21; 2000210,20; 2000223,13; 2000301,12; 2000312,11; 2000322,10; 2000331,3; 2000333,2 (n=128 in b10) (c=10)
20000 in b4 → 200000003 = sum(23,512); 200000121,112; 200000232,111; 200001002,110; 200001111,103; 200001213,102; 200001320,101; 200002020,100; 200002113,33; 200002211,32; 200002302,31; 200002332,30; 200003021,23; 200003103,22; 200003130,21; 200003210,20; 200003223,13; 200003301,12; 200003312,11; 200003322,10; 200003331,3; 200003333,2 (n=512 in b10) (c=22)


Base 8

17 in b8 → 170 = sum(1,17) (n=15 in b10) (c=1)
20 in b8 → 202 = sum(4,16); 205,3; 207,2 (n=16 in b10) (c=3)
200 in b8 → 20011 = sum(11,128); 20023,12; 20034,11; 20044,10; 20053,7; 20061,6; 20066,5; 20072,4; 20075,3; 20077,2 (n=128 in b10) (c=10)
2000 in b8 → 2000020 = sum(32,1024); 2000057,37; 2000115,36; 2000152,35; 2000206,34; 2000241,33; 2000273,32; 2000324,31; 2000354,30; 2000403,27; 2000431,26; 2000456,25; 2000502,24; 2000525,23; 2000547,22; 200057
0,21; 2000610,20; 2000627,17; 2000645,16; 2000662,15; 2000676,14; 2000711,13; 2000723,12; 2000734,11; 2000744,10; 2000753,7; 2000761,6; 2000766,5; 2000772,4; 2000775,3; 2000777,2 (n=1024 in b10) (c=31)


Base 16

1F in b16 → 1F0 = sum(1,1F) (n=31 in b10) (c=1)
20 in b16 → 201 = sum(6,32); 206,5; 20A,4; 20D,3; 20F,2 (n=32 in b10) (c=5)
200 in b16 → 20003 = sum(23,512); 20019,16; 2002E,15; 20042,14; 20055,13; 20067,12; 20078,11; 20088,10; 20097,F; 200A5,E; 200B2,D; 200BE,C; 200C9,B; 200D3,A; 200DC,9; 200E4,8; 200EB,7; 200F1,6; 20
0
F6,5; 200FA,4; 200FD,3; 200FF,2 (n=512 in b10) (c=22)
[…]
EE4 in b16 → 42EE4A = sum(961,EE4); 6EE413,16; 6EE428,15; 6EE43C,14; 6EE44F,13; 6EE461,12; 6EE472,11; 6EE482,10; 6EE491,F; 6EE49F,E; 6EE4AC,D; 6EE4B8,C; 6EE4C3,B; 6EE4CD,A; 6EE4D6,9; 6EE4DE,8; 6EE4E5,7; 6EE4EB,6; 6EE4F0,5; 6EE4F4,4; 6EE4F7,3; 6EE4F9,2; 6EE4FA,1 (n=3812 in b10) (c=23)
2000 in b16 → 2000001 = sum(5B,2000); 200005B,5A; 20000B4,59; 200010C,58; 2000163,57; 20001B9,56; 200020E,55; 2000262,54; 20002B5,53; 2000307,52; 2000358,51; 20003A8,50; 20003F7,4F; 2000445,4E; 2000492,4D; 20004DE,4C; 2000529,4B; 2000573,4A; 20005BC,49; 2000604,48; 200064B,47; 2000691,46; 20006D6,45; 200071A,44; 200075D,43; 200079F,42; 20007E0,41; 2000820,40; 200085F,3F; 200089D,3E; 20008DA,3D; 2000916,3C; 2000951,3B; 200098B,3A; 20009C4,39; 20009FC,38; 2000A33,37; 2000A69,36; 2000A9E,35; 2000AD2,34; 2000B05,33; 2000B37,32; 2000B68,31; 2000B98,30; 2000BC7,2F; 2000BF5,2E; 2000C22,2D; 2000C4E,2C; 2000C79,2B; 2000CA3,2A; 2000CCC,29; 2000CF4,28; 2000D1B,27; 2000D41,26; 2000D66,25; 2000D8A,24; 2000DAD,23; 2000DCF,22; 2000DF0,21; 2000E10,20; 2000E2F,1F; 2000E4D,1E; 2000E6A,1D; 2000E86,1C; 2000EA1,1B; 2000EBB,1A; 2000ED4,19; 2000EEC,18; 2000F03,17; 2000F19,16; 2000F2E,15; 2000F42,14; 2000F55,13; 2000F67,12; 2000F78,11; 2000F88,10; 2000F97,F; 2000FA5,E; 2000FB2,D; 2000FBE,C; 2000FC9,B; 2000FD3,A; 2000FDC,9; 2000FE4,8; 2000FEB,7; 2000FF1,6; 2000FF6,5; 2000FFA,4; 2000FFD,3; 2000FFF,2 (n=8192 in b10) (c=90)


Previously Pre-Posted (Please Peruse)

Summer-Time Hues
Summer-Climb Views
Summult-Time Hues

Feral Fractions

“The uniquely unrepresentative ‘Egyptian’ fraction.” That’s what David Wells calls 2/3 = 0·666… in The Penguin Dictionary of Curious and Interesting Numbers (1986). Why unrepresentative”? Wells goes on to explain: “the Egyptians used only unit fractions, with this one exception. All other fractional quantities were expressed as sums of unit fractions.”

A unit fraction is 1 divided by a higher integer: 1/2, 1/3, 1/4, 1/5 and so on. Modern mathematicians are interested in those sums of unit fractions that produce integers, like this:

1 = 1/2 + 1/3 + 1/6 = egypt(2,3,6)
1 = 1/2 + 1/4 + 1/6 + 1/12 = egypt(2,4,6,12)
1 = 1/2 + 1/3 + 1/10 + 1/15 = = egypt(2,3,10,15)
1 = egypt(2,4,10,12,15)
1 = egypt(3,4,6,10,12,15)
1 = egypt(2,3,9,18)
1 = egypt(2,4,9,12,18)
1 = egypt(3,4,6,9,12,18)
1 = egypt(2,6,9,10,15,18)
1 = egypt(3,4,9,10,12,15,18)
1 = egypt(2,4,5,20)
1 = egypt(3,4,5,6,20)
1 = egypt(2,5,6,12,20)
1 = egypt(3,4,5,10,15,20)
1 = egypt(2,5,10,12,15,20)
1 = egypt(3,5,6,10,12,15,20)
1 = egypt(3,4,5,9,18,20)
1 = egypt(2,5,9,12,18,20)
1 = egypt(3,5,6,9,12,18,20)
1 = egypt(4,5,6,9,10,15,18,20)

2 = egypt(2,3,4,5,6,8,9,10,15,18,20,24)
2 = 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/8 + 1/9 + 1/10 + 1/15 + 1/18 + 1/20 + 1/24


Sums-to-integers like those are called Egyptian fractions, for short. I looked for some such sums that included 1/666:

1 = egypt(2,3,7,63,222,518,666)
1 = egypt(2,3,8,36,111,296,666)
1 = egypt(2,3,9,20,444,555,666)
1 = egypt(2,3,9,21,222,518,666)
1 = egypt(2,3,9,24,111,296,666)
1 = egypt(2,3,9,26,74,481,666)
1 = egypt(2,4,8,9,111,296,666)


And I looked for Egyptian fractions whose denominators summed to rep-digits like 111 and 666 (denominators are the bit below the stroke of 1/3 or 2/3, where the bit above is called the numerator):

1 = egypt(4,6,7,9,10,14,15,18,28)
111 = 4+6+7+9+10+14+15+18+28


1 = egypt(3,6,8,9,10,15,21,24,126)
222 = 3+6+8+9+10+15+21+24+126


1 = egypt(2,6,8,12,16,17,272)
333 = 2+6+8+12+16+17+272


1 = egypt(2,4,9,11,22,396)
444 = 2+4+9+11+22+396


1 = egypt(5,6,9,10,11,12,15,20,21,22,28,396)
555 = 5+6+9+10+11+12+15+20+21+22+28+396


1 = egypt(2,6,8,10,15,25,600)
666 = 2+6+8+10+15+25+600


1 = egypt(4,5,8,12,14,18,20,21,24,26,28,819)
999 = 4+5+8+12+14+18+20+21+24+26+28+819


Alas, Egyptian fractions like those are attractive but trivial. This isn’t trivial, though:

Prof Greg Martin of the University of British Columbia has found a remarkable Egyptian fraction for 1 with 454 denominators all less than 1000.

1 = egypt(97, 103, 109, 113, 127, 131, 137, 190, 192, 194, 195, 196, 198, 200, 203, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 225, 228, 230, 231, 234, 235, 238, 240, 244, 245, 248, 252, 253, 254, 255, 256, 259, 264, 265, 266, 267, 268, 272, 273, 274, 275, 279, 280, 282, 284, 285, 286, 287, 290, 291, 294, 295, 296, 299, 300, 301, 303, 304, 306, 308, 309, 312, 315, 319, 320, 321, 322, 323, 327, 328, 329, 330, 332, 333, 335, 338, 339, 341, 342, 344, 345, 348, 351, 352, 354, 357, 360, 363, 364, 365, 366, 369, 370, 371, 372, 374, 376, 377, 378, 380, 385, 387, 390, 391, 392, 395, 396, 399, 402, 403, 404, 405, 406, 408, 410, 411, 412, 414, 415, 416, 418, 420, 423, 424, 425, 426, 427, 428, 429, 430, 432, 434, 435, 437, 438, 440, 442, 445, 448, 450, 451, 452, 455, 456, 459, 460, 462, 464, 465, 468, 469, 470, 472, 473, 474, 475, 476, 477, 480, 481, 483, 484, 485, 486, 488, 490, 492, 493, 494, 495, 496, 497, 498, 504, 505, 506, 507, 508, 510, 511, 513, 515, 516, 517, 520, 522, 524, 525, 527, 528, 530, 531, 532, 533, 536, 539, 540, 546, 548, 549, 550, 551, 552, 553, 555, 558, 559, 560, 561, 564, 567, 568, 570, 572, 574, 575, 576, 580, 581, 582, 583, 584, 585, 588, 589, 590, 594, 595, 598, 603, 605, 608, 609, 610, 611, 612, 616, 618, 620, 621, 623, 624, 627, 630, 635, 636, 637, 638, 640, 642, 644, 645, 646, 648, 649, 650, 651, 654, 657, 658, 660, 663, 664, 665, 666, 667, 670, 671, 672, 675, 676, 678, 679, 680, 682, 684, 685, 688, 689, 690, 693, 696, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 714, 715, 720, 725, 726, 728, 730, 731, 735, 736, 740, 741, 742, 744, 748, 752, 754, 756, 759, 760, 762, 763, 765, 767, 768, 770, 774, 775, 776, 777, 780, 781, 782, 783, 784, 786, 790, 791, 792, 793, 798, 799, 800, 804, 805, 806, 808, 810, 812, 814, 816, 817, 819, 824, 825, 826, 828, 830, 832, 833, 836, 837, 840, 847, 848, 850, 851, 852, 854, 855, 856, 858, 860, 864, 868, 869, 870, 871, 872, 873, 874, 876, 880, 882, 884, 888, 890, 891, 893, 896, 897, 899, 900, 901, 903, 904, 909, 910, 912, 913, 915, 917, 918, 920, 923, 924, 925, 928, 930, 931, 935, 936, 938, 940, 944, 945, 946, 948, 949, 950, 952, 954, 957, 960, 962, 963, 966, 968, 969, 972, 975, 976, 979, 980, 981, 986, 987, 988, 989, 990, 992, 994, 996, 999) — "Egyptian Fractions" by Ron Knott at Surrey University


Color-Coded ContFracs

Continued fractions are cool… Too cool for school. Or too cool for my school, at least. Because I never learnt about them there. Now that I have learnt about them, they’ve helped me wade a little further into the immeasurable Mare Mathematicum. Or Mare Matris Mathematicæ. I’m almost ankle-deep now, rather than just toe-deep. (I wish.)

But apart from aiding my understanding, continued fractions have always enhanced my entertainment. I can use them to find pretty but (probably) puny patterns like these:


[3,1,2] = contfrac(3/12) in base 9 = contfrac(3/11) in base 10
4,1,34/13 in b16 = 4/19
5,1,45/14 in b25 = 5/29
6,1,56/15 in b36 = 6/41
7,1,67/16 in b49 = 7/55
8,1,78/17 in b64 = 8/71
9,1,89/18 in b81 = 9/89
A,1,9A/19 in b100 = 10/109 → 10,1,9
B,1,AB/1A in b121 = 11/131 → 11,1,10
C,1,BC/1B in b144 = 12/155 → 12,1,11


Those patterns with square numbers carry on for ever, I assume. I also assume that the similar patterns below do too, though I’m not sure if every base contains an infinite number of them. Maybe some bases don’t contain any at all. I haven’t found any in base 10 so far:


[25,2] = contfrac(2/52) in base 9 = contfrac(2/47) in base 10 = [23,2]
42,1,34/213 in b8 = 4/139 → 34,1,3
4,1,2,3,341/233 in b8 = 33/155
24,1,3,1,224/1312 in b5 = 14/207 → 14,1,3,1,2
1,17,1,2,3117/123 in b14 = 217/227 → 1,21,1,2,3
320,1,23/2012 in b5 = 3/257 → 85,1,2
254,22/542 in b7 = 2/275 → 137,2
3A,33/A3 in b28 = 3/283 → 94,3
3,5,A,235/A2 in b34 = 107/342 → 3,5,10,2
12,1,5,312/153 in b17 = 19/377 → 19,1,5,3
12,1,5,312/153 in b17 = 19/377 → 19,1,5,3
3,1,4,1,4,1,5314/1415 in b8 = 204/781
2,1,36,3,2213/632 in b12 = 303/902 → 2,1,42,3,2
3,2,11,2,2,2321/1222 in b9 = 262/911 → 3,2,10,2,2,2
41,2,1,1,641/2116 in b8 = 33/1102 → 33,2,1,1,6
4H,44/H4 in b65 = 4/1109 → 277,4
249,22/492 in b17 = 2/1311 → 655,2
6,2,1,3,J62/13J in b35 = 212/1349 → 6,2,1,3,19
8,3,3,1,D83/31D in b22 = 179/1487 → 8,3,3,1,13
142,1,1,614/2116 in b9 = 13/1554 → 119,1,1,6
10,1,111,1,1,21011/11112 in b6 = 223/1556 → 6,1,43,1,1,2
204,1,1720/4117 in b8 = 16/2127 → 132,1,15
93,1,89/318 in b27 = 9/2222 → 246,1,8
1,3A,1,1,4,2,213A1/1422 in b12 = 2281/2330 → 1,46,1,1,4,2,2
4340,1,34/34013 in b5 = 4/2383 → 595,1,3
13,1,7,613/176 in b46 = 49/2444 → 49,1,7,6
C7,1,BC/71B in b21 = 12/3119 → 259,1,11
35,3,2,3,1,1,2353/23112 in b6 = 141/3284 → 23,3,2,3,1,1,2
1,2,2,1,O,F122/1OF in b50 = 2602/3715 → 1,2,2,1,24,15
2,1,1,5,55211/555 in b28 = 1597/4065 → 2,1,1,5,145
1P,2,H,21P/2H2 in b47 = 72/5219 → 72,2,17,2
50,14,1,1,1,5501/41115 in b6 = 181/5447 → 30,10,1,1,1,5
5450,1,45/45014 in b6 = 5/6274 → 1254,1,4
3103,1,23/10312 in b9 = 3/6815 → 2271,1,2
4B,1,2,2,C4B/122C in b19 = 87/7631 → 87,1,2,2,12
3G,D,2,33G/D23 in b26 = 94/8843 → 94,13,2,3
3,1,1,A,K,6311/AK6 in b29 = 2553/8996 → 3,1,1,10,20,6
1,2[70],1,3,912[70]/139 in b98 = 9870/9907 → 1,266,1,3,9
14,1,9,A14/19A in b97 = 101/10292 → 101,1,9,10
14,1,9,A14/19A in b97 = 101/10292 → 101,1,9,10
4133,1,14,241/331142 in b5 = 21/11422 → 543,1,9,2
1,E,4,1,M,71E4/1M7 in b100 = 11404/12207 → 1,14,4,1,22,7
LG,5,4L/G54 in b28 = 21/12688 → 604,5,4

Matching Fractions

0.1666… = 1/6
0.0273972… = 2/73
0.0379746… = 3/79
0.0016181229… = 1/618
0.0027322404… = 2/732 → 1/366
0.0058548009… = 5/854
0.01393354769… = 13/933
0.07598784194… = 75/987 → 25/329
0.08998988877… = 89/989
0.141993957703… = 141/993 → 47/331
0.0005854115443… = 5/8541
0.00129282482223… = 12/9282 → 2/1547
0.00349722279366… = 34/9722 → 17/4861
0.013599274705349… = 135/9927 → 15/1103
0.0000273205382146… = 2/73205


0.0465103… = 4/65 in base 8 = 4/53 in base 10
0.13735223… = 13/73 in b8 = 11/59 in b10
0.0036256353… = 3/625 → 1/207 in b8 = 3/405 → 1/135 in b10
0.01172160236… = 11/721 → 3/233 in b8 = 9/465 → 3/155 in b10
0.01272533117… = 12/725 in b8 = 10/469 in b10
0.03175523464… = 31/755 in b8 = 25/493 in b10
0.06776766655… = 67/767 in b8 = 55/503 in b10
0.251775771755… = 251/775 in b8 = 169/509 in b10
0.0003625152504… = 3/6251 in b8 = 3/3241 in b10
0.00137303402723… = 13/7303 in b8 = 11/3779 in b10
0.00267525714052… = 26/7525 in b8 = 22/3925 in b10
0.035777577356673… = 357/7757 in b8 = 239/4079 in b10


0.3763… = 3/7 in b9 = 3/7 in b10
0.0155187… = 1/55 in b9 = 1/50 in b10
0.0371482… = 3/71 in b9 = 3/64 in b10
0.0474627… = 4/74 in b9 = 4/67 in b10
0.43878684… = 43/87 in b9 = 39/79 in b10
0.07887877766… = 78/878 in b9 = 71/719 in b10
0.01708848667… = 17/0884 → 4/221 in b9 = 16/724 → 4/181 in b10
0.170884866767… = 170/884 → 40/221 in b9 = 144/724 → 36/181 in b10


0.2828… = 2/8 → 1/4 in b11 = 2/8 → 1/4 in b10
0.4986… = 4/9 in b11 = 4/9 in b10
0.54A9A8A6… = 54/A9 in b11 = 59/119 in b10
0.0010A17039… = 1/A17 in b11 = 1/1228 in b10
0.010A170392A… = 10/A17 in b11 = 11/1228 in b10
0.01AA5854872… = 1A/A58 in b11 = 21/1273 in b10
0.027A716A416… = 27/A71 in b11 = 29/1288 in b10
0.032A78032A7… = 32/A78 → 1/34 in b11 = 35/1295 → 1/37 in b10
0.0190AA5A829… = 19/0AA5 → 4/221 in b11 = 20/1325 → 4/265 in b10
0.190AA5A829… = 190/AA5 → 40/221 in b11 = 220/1325 → 44/265 in b10


0.23B7A334… = 23/B7 in b12 = 27/139 in b10
0.075BA597224… = 75/BA5 in b12 = 89/1709 in b10
0.0ABBABAAA99… = AB/BAB in b12 = 131/1715 in b10
0.185BB5B859B4… = 185/BB5 in b12 = 245/1721 in b10

In 10 Words: Im-Precise

I was looking at the best rational approximations for π when I was puzzled for a moment or two by the way the precision of digits didn’t always improve:

22/7 →
3.1428571... = 22/7 (precision = 3 digits)
3.1415926... = π
333/106 →
3.141509433... = 333/106 (pr=5)
3.141592653... = π
355/113 →
3.14159292035... = 355/113 (pr=7)
3.14159265358... = π
103993/33102 →
3.14159265301190... (pr=10)
3.14159265358979... = π
104348/33215 →
3.14159265392142... (pr=10)
3.14159265358979... = π
208341/66317 →
3.14159265346743... (pr=10)
3.14159265358979... = π
312689/99532 →
3.14159265361893... (pr=10)
3.14159265358979... = π
833719/265381 →
3.1415926535810777... (pr=12)
3.1415926535897932... = π
1146408/364913 →
3.141592653591403... (pr=11)
3.141592653589793... = π
4272943/1360120 →
3.14159265358938917... (pr=13)
3.14159265358979323... = π
5419351/1725033 →
3.14159265358981538... (pr=13)
3.14159265358979323... = π
80143857/25510582 →
3.1415926535897926593... (pr=15)
3.1415926535897932384... = π
165707065/52746197 →
3.14159265358979340254... (pr=16)
3.14159265358979323846... = π
245850922/78256779 →
3.14159265358979316028... (pr=16)
3.14159265358979323846... = π
411557987/131002976 →
3.141592653589793257826... (pr=17)
3.141592653589793238462... = π
1068966896/340262731 →
3.1415926535897932353925... (pr=18)
3.1415926535897932384626... = π
2549491779/811528438 →
3.1415926535897932390140... (pr=18)
3.1415926535897932384626... = π
6167950454/1963319607 →
3.14159265358979323838637... (pr=19)
3.14159265358979323846264... = π
14885392687/4738167652 →
3.141592653589793238493875... (pr=20)
3.141592653589793238462643... = π


But it was my precision that was wrong, of course. I wasn’t thinking about digits precisely enough. One approximation can be closer to π with fewer precise digits than another (e.g. 3.14201… is closer to π than 3.14101…). The same applies in binary, but there the precision tends to increase much more obviously:

22/7 →
3.1428571... = 22/7 in base 10 (pr=3)
3.1415926... = π in base 10
11.0010010010010... = 22/7 in base 2 (pr=9)
11.0010010000111... = π in base 2
333/106 →
3.141509433... = 333/106 in b10 (pr=5)
3.141592653... = π in b10
11.001001000011100111... = 333/106 in b2 (pr=14)
11.001001000011111101... = π in b2
355/113 →
3.14159292035... (pr=7)
3.14159265358... = π
11.00100100001111110110111100... = 355/113 in b2 (pr=22)
11.00100100001111110110101010... = π in b2
103993/33102 →
3.14159265301190... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100001100... (pr=29)
11.001001000011111101101010100010001... = π
104348/33215 →
3.14159265392142... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100010011111... (pr=32)
11.001001000011111101101010100010001000... = π
208341/66317 →
3.14159265346743... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100001111... (pr=29)
11.001001000011111101101010100010001... = π
312689/99532 →
3.14159265361893... (pr=10)
3.14159265358979... = π
11.001001000011111101101010100010001010010... (pr=35)
11.001001000011111101101010100010001000010... = π
833719/265381 →
3.1415926535810777... (pr=12)
3.1415926535897932... = π
11.0010010000111111011010101000100001111... (pr=33)
11.0010010000111111011010101000100010000... = π
1146408/364913 →
3.141592653591403... (pr=11)
3.141592653589793... = π
11.0010010000111111011010101000100010000111011... (pr=39)
11.0010010000111111011010101000100010000101101... = π
4272943/1360120 →
3.14159265358938917... (pr=13)
3.14159265358979323... = π
11.001001000011111101101010100010001000010100110... (pr=41)
11.001001000011111101101010100010001000010110100... = π
5419351/1725033 →
3.14159265358981538... (pr=13)
3.14159265358979323... = π
11.0010010000111111011010101000100010000101101010010... (pr=45)
11.0010010000111111011010101000100010000101101000110... = π
80143857/25510582 →
3.1415926535897926593... (pr=15)
3.1415926535897932384... = π
11.0010010000111111011010101000100010000101101000101101... (pr=48)
11.0010010000111111011010101000100010000101101000110000... = π
165707065/52746197 →
3.14159265358979340254... (pr=16)
3.14159265358979323846... = π
11.00100100001111110110101010001000100001011010001100010100... (pr=52)
11.00100100001111110110101010001000100001011010001100001000... = π
245850922/78256779 →
3.14159265358979316028... (pr=16)
3.14159265358979323846... = π
11.001001000011111101101010100010001000010110100011000000110... (pr=53)
11.001001000011111101101010100010001000010110100011000010001... = π
411557987/131002976 →
3.141592653589793257826... (pr=17)
3.141592653589793238462... = π
11.00100100001111110110101010001000100001011010001100001010001... (pr=55)
11.00100100001111110110101010001000100001011010001100001000110... = π
1068966896/340262731 →
3.1415926535897932353925... (pr=18)
3.1415926535897932384626... = π
11.00100100001111110110101010001000100001011010001100001000100110... (pr=58)
11.00100100001111110110101010001000100001011010001100001000110100... = π
2549491779/811528438 →
3.1415926535897932390140... (pr=18)
3.1415926535897932384626... = π
11.00100100001111110110101010001000100001011010001100001000110111010... (pr=61)
11.00100100001111110110101010001000100001011010001100001000110100110... = π
6167950454/1963319607 →
3.14159265358979323838637... (pr=19)
3.14159265358979323846264... = π
11.0010010000111111011010101000100010000101101000110000100011010001101... (pr=63)
11.0010010000111111011010101000100010000101101000110000100011010011000... = π
14885392687/4738167652 →
3.141592653589793238493875... (pr=20)
3.141592653589793238462643... = π
11.001001000011111101101010100010001000010110100011000010001101001110100... (pr=65)
11.001001000011111101101010100010001000010110100011000010001101001100010... = π


Post-Performative Post-Scriptum…

The title of this terato-toxic post is a maximal mash-up (wow) of two well-known toxico-teratic tropes:

• “There are 10 kinds of people in the world. Those who understand binary and those who don’t.”
• Sam Goldwyn’s malapropism: “In two words: im-possible!”

Power Flip

12 is an interesting number in a lot of ways. Here’s one way I haven’t seen mentioned before:

12 = 3^1 * 2^2


The digits of 12 represent the powers of the primes in its factorization, if primes are represented from right-to-left, like this: …7, 5, 3, 2. But I couldn’t find any more numbers like that in base 10, so I tried a power flip, from right-left to left-right. If the digits from left-to-right represent the primes in the order 2, 3, 5, 7…, then this number is has prime-power digits too:

81312000 = 2^8 * 3^1 * 5^3 * 7^1 * 11^2 * 13^0 * 17^0 * 19^0


Or, more simply, given that n^0 = 1:

81312000 = 2^8 * 3^1 * 5^3 * 7^1 * 11^2


I haven’t found any more left-to-right prime-power digital numbers in base 10, but there are more in other bases. Base 5 yields at least three (I’ve ignored numbers with just two digits in a particular base):

110 in b2 = 2^1 * 3^1 (n=6)
130 in b6 = 2^1 * 3^3 (n=54)
1010 in b2 = 2^1 * 3^0 * 5^1 (n=10)
101 in b3 = 2^1 * 3^0 * 5^1 (n=10)
202 in b7 = 2^2 * 3^0 * 5^2 (n=100)
3020 in b4 = 2^3 * 3^0 * 5^2 (n=200)
330 in b8 = 2^3 * 3^3 (n=216)
13310 in b14 = 2^1 * 3^3 * 5^3 * 7^1 (n=47250)
3032000 in b5 = 2^3 * 3^0 * 5^3 * 7^2 (n=49000)
21302000 in b5 = 2^2 * 3^1 * 5^3 * 7^0 * 11^2 (n=181500)
7810000 in b9 = 2^7 * 3^8 * 5^1 (n=4199040)
81312000 in b10 = 2^8 * 3^1 * 5^3 * 7^1 * 11^2


Post-Performative Post-Scriptum

When I searched for 81312000 at the Online Encyclopedia of Integer Sequences, I discovered that these are Meertens numbers, defined at A246532 as the “base n Godel encoding of x [namely,] 2^d(1) * 3^d(2) * … * prime(k)^d(k), where d(1)d(2)…d(k) is the base n representation of x.”

Period Panes

In his Penguin Dictionary of Curious and Interesting Numbers (1986), David Wells says that 142857 is “beloved of all recreational mathematicians”. He then says it’s the decimal period of the reciprocal of the fourth prime: “1/7 = 0·142857142857142…” And the reciprocal has maximum period. There are 6 = 7-1 digits before repetition begins, unlike the earlier prime reciprocals:


1/2 = 0·5
1/3 = 0·333...
1/5 = 0·2
1/7 = 0·142857 142857 142...

In other words, all possible remainders appear when you calculate the decimals of 1/7:


1*10 / 7 = 1 remainder 3 → 0·1
3*10 / 7 = 4 remainder 2 → 0·14
2*10 / 7 = 2 remainder 6 → 0·142
6*10 / 7 = 8 remainder 4 → 0·1428
4*10 / 7 = 5 remainder 5 → 0·14285
5*10 / 7 = 7 remainder 1 → 0·142857
1*10 / 7 = 1 remainder 3 → 0·142857 1
3*10 / 7 = 4 remainder 2 → 0·142857 14
2*10 / 7 = 2 remainder 6 → 0·142857 142...

That happens again with 1/17 and 1/19, but Wells says that “surprisingly, there is no known method of predicting which primes have maximum period.” It’s a simple question that involves some deep mathematics. Looking at prime reciprocals is like peering through a small window into a big room. Some things are easy to see, some are difficult and some are presently impossible.

In his discussion of 142857, Wells mentions one way of peering through a period pane: “The sequence of digits also makes a striking pattern when the digits are arranged around a circle.” Here is the pattern, with ten points around the circle representing the digits 0 to 9:

The digits of 1/7 = 0·142857142…


But I prefer, for further peers through the period-panes, to create the period-panes using remainders rather than digits. That is, the number of points around the circle is determined by the prime itself rather than the base in which the reciprocal is calculated:

The remainders of 1/7 = 1, 3, 2, 6, 4, 5…


Period-panes can look like butterflies or bats or bivalves or spiders or crabs or even angels. Try the remainders of 1/13. This prime reciprocal doesn’t have maximum period: 1/13 = 0·076923 076923 076923… So there are only six remainders, creating this pattern:

remainders(1/13) = 1, 10, 9, 12, 3, 4


The multiple 2/13 has different remainders and creates a different pattern:

remainders(2/13) = 2, 7, 5, 11, 6, 8


But 1/17, 1/19 and 1/23 all have maximum period and yield these period-panes:

remainders(1/17) = 1, 10, 15, 14, 4, 6, 9, 5, 16, 7, 2, 3, 13, 11, 8, 12


remainders(1/19) = 1, 10, 5, 12, 6, 3, 11, 15, 17, 18, 9, 14, 7, 13, 16, 8, 4, 2


remainders(1/23) = 1, 10, 8, 11, 18, 19, 6, 14, 2, 20, 16, 22, 13, 15, 12, 5, 4, 17, 9, 21, 3, 7


It gets mixed again with the prime 73, which doesn’t have maximum period and yields a plethora of period-panes (some patterns repeat with different n * 1/73, so I haven’t included them):

remainders(1/73)


remainders(2/73)


remainders(3/73)


remainders(4/73)


remainders(5/73)


remainders(6/73)


remainders(9/73)


remainders(11/73) (identical to pattern of 5/73)


remainders(12/73)


remainders(18/73)


101 yields a plethora of period-panes, but they’re variations on a simple theme. They look like flapping wings in this animated gif:

remainders of n/101 (animated)


The remainders of 137 yield more complex period-panes:

remainders of n/137 (animated)


And what about different bases? Here are period-panes for the remainders of 1/17 in bases 2 to 16:

remainders(1/17) in base 2


remainders(1/17) in b3


remainders(1/17) in b4


remainders(1/17) in b5


remainders(1/17) in b6


remainders(1/17) in b7


remainders(1/17) in b8


remainders(1/17) in b9


remainders(1/17) in b10


remainders(1/17) in b11


remainders(1/17) in b12


remainders(1/17) in b13


remainders(1/17) in b14


remainders(1/17) in b15


remainders(1/17) in b16


remainders(1/17) in bases 2 to 16 (animated)


But the period-panes so far have given a false impression. They’ve all been symmetrical. That isn’t the case with all the period-panes of n/19:

remainders(1/19) in b2


remainders(1/19) in b3


remainders(1/19) in b4 = 1, 4, 16, 7, 9, 17, 11, 6, 5 (asymmetrical)


remainders(1/19) in b5 = 1, 5, 6, 11, 17, 9, 7, 16, 4 (identical pattern to that of b4)


remainders(1/19) in b6


remainders(1/19) in b7


remainders(1/19) in b8


remainders(1/19) in b9


remainders(1/19) in b10 (identical pattern to that of b2)


remainders(1/19) in b11


remainders(1/19) in b12


remainders(1/19) in b13


remainders(1/19) in b14


remainders(1/19) in b15


remainders(1/19) in b16


remainders(1/19) in b17


remainders(1/19) in b18


remainders(1/19) in bases 2 to 18 (animated)


Here are a few more period-panes in different bases:

remainders(1/11) in b2


remainders(1/11) in b7


remainders(1/13) in b6


remainders(1/43) in b6


remainders in b2 for reciprocals of 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149 (animated)


And finally, to performativize the pun of “period pane”, here are some period-panes for 1/29, whose maximum period will be 28 (NASA says that the “Moon takes about one month to orbit Earth … 27.3 days to complete a revolution, but 29.5 days to change from New Moon to New Moon”):

remainders(1/29) in b4


remainders(1/29) in b5


remainders(1/29) in b8


remainders(1/29) in b9


remainders(1/29) in b11


remainders(1/29) in b13


remainders(1/29) in b14


remainders(1/29) in various bases (animated)


Pyramidic Palindromes

As I’ve said before on Overlord of the Über-Feral: squares are boring. As I’ve shown before on Overlord of the Über-Feral: squares are not so boring after all.

Take A000330 at the Online Encyclopedia of Integer Sequences:

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370… — A000330 at OEIS


The sequence shows the square pyramidal numbers, formed by summing the squares of integers:

• 1 = 1^2
• 5 = 1^2 + 2^2 = 1 + 4
• 14 = 1^2 + 2^2 + 3^2 = 1 + 4 + 9
• 30 = 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16

[…]


You can see the pyramidality of the square pyramidals when you pile up oranges or cannonballs:

Square pyramid of 91 cannonballs at Rye Castle, East Sussex (Wikipedia)


I looked for palindromes in the square pyramidals. These are the only ones I could find:

1 (k=1)
5 (k=2)
55 (k=5)
1992991 (k=181)


The only ones in base 10, that is. When I looked in base 9 = 3^2, I got a burst of pyramidic palindromes like this:

1 (k=1)
5 (k=2)
33 (k=4) = 30 in base 10 (k=4)
111 (k=6) = 91 in b10 (k=6)
122221 (k=66) = 73810 in b10 (k=60)
123333321 (k=666) = 54406261 in b10 (k=546)
123444444321 (k=6,666) = 39710600020 in b10 (k=4920)
123455555554321 (k=66,666) = 28952950120831 in b10 (k=44286)
123456666666654321 (k=666,666) = 21107018371978630 in b10 (k=398580)
123456777777777654321 (k=6,666,666) = 15387042129569911801 in b10 (k=3587226)
123456788888888887654321 (k=66,666,666) = 11217155797104231969640 in b10 (k=32285040)


The palindromic pattern from 6[…]6 ends with 66,666,666, because 8 is the highest digit in base 9. When you look at the 666,666,666th square pyramidal in base 9, you’ll find it’s not a perfect palindrome:

123456801111111111087654321 (k=666,666,666) = 8177306744945450299267171 in b10 (k=290565366)

But the pattern of pyramidic palindromes is good while it lasts. I can’t find any other base yielding a pattern like that. And base 9 yields another burst of pyramidic palindromes in a related sequence, A000537 at the OEIS:

1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, 6084, 8281, 11025, 14400, 18496, 23409, 29241, 36100, 44100, 53361, 64009, 76176, 90000, 105625, 123201, 142884, 164836, 189225, 216225, 246016, 278784, 314721, 354025, 396900, 443556, 494209, 549081… — A000537 at OEIS


The sequence is what you might call the cubic pyramidal numbers, that is, the sum of the cubes of integers:

• 1 = 1^2
• 9 = 1^2 + 2^3 = 1 + 8
• 36 = 1^3 + 2^3 + 3^3 = 1 + 8 + 27
• 100 = 1^3 + 2^3 + 3^3 + 4^3 = 1 + 8 + 27 + 64

[…]


I looked for palindromes there in base 9:

1 (k=1) = 1 (k=1)
121 (k=4) = 100 in base 10 (k=4)
12321 (k=14) = 8281 (k=13)
1234321 (k=44) = 672400 (k=40)
123454321 (k=144) = 54479161 (k=121)
12345654321 (k=444) = 4412944900 (k=364)
1234567654321 (k=1444) = 357449732641 (k=1093)
123456787654321 (k=4444) = 28953439105600 (k=3280)
102012022050220210201 (k=137227) = 12460125198224404009 (k=84022)


But while palindromes are fun, they’re not usually mathematically significant. However, this result using the square pyrmidals is certainly significant:


Previously Pre-Posted…

More posts about how squares aren’t so boring after all:

Curvous Energy
Back to Drac #1
Back to Drac #2
Square’s Flair

Nuts for Numbers

I was looking at palindromes created by sums of consecutive integers. And I came across this beautiful result:

2772 = sum(22..77)


2772 = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 + 41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 + 61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77

You could call 2772 a nutty sum, because 77 is held inside 22 like a kernel inside a nutshell. Here some more nutty sums, sum(n1..n2), where n2 is a kernel in the shell of n1:

1599 = sum(19..59)
2772 = sum(22..77)
22113 = sum(23..211)
159999 = sum(199..599)
277103 = sum(203..771)
277722 = sum(222..777)
267786 = sum(266..778)
279777 = sum(277..797)
1152217 = sum(117..1522)
1152549 = sum(149..1525)
1152767 = sum(167..1527)
4296336 = sum(436..2963)
5330303 = sum(503..3303)
6235866 = sum(626..3586)
8418316 = sum(816..4183)
10470075 = sum(1075..4700)
11492217 = sum(1117..4922)
13052736 = sum(1306..5273)
13538277 = sum(1377..5382)
14557920 = sum(1420..5579)
15999999 = sum(1999..5999)
25175286 = sum(2516..7528)
26777425 = sum(2625..7774)
27777222 = sum(2222..7777)
37949065 = sum(3765..9490)
53103195 = sum(535..10319)
111497301 = sum(1101..14973)

Of course, you can go the other way and find nutty sums where sum(n1..n2) produces n1 as a kernel inside the shell of n2:

147 = sum(4..17)
210 = sum(1..20)
12056 = sum(20..156)
13467 = sum(34..167)
22797 = sum(79..227)
22849 = sum(84..229)
26136 = sum(61..236)
1145520 = sum(145..1520)
1208568 = sum(208..1568)
1334667 = sum(334..1667)
1540836 = sum(540..1836)
1931590 = sum(315..1990)
2041462 = sum(414..2062)
2041863 = sum(418..2063)
2158083 = sum(158..2083)
2244132 = sum(244..2132)
2135549 = sum(554..2139)
2349027 = sum(902..2347)
2883558 = sum(883..2558)
2989637 = sum(989..2637)

When you look at nutty sums in other bases, you’ll find that the number “210” is always triangular and always a nutty sum in bases > 2:

210 = sum(1..20) in b3 → 21 = sum(1..6) in b10
210 = sum(1..20) in b4 → 36 = sum(1..8) in b10
210 = sum(1..20) in b5 → 55 = sum(1..10) in b10
210 = sum(1..20) in b6 → 78 = sum(1..12) in b10
210 = sum(1..20) in b7 → 105 = sum(1..14) in b10
210 = sum(1..20) in b8 → 136 = sum(1..16) in b10
210 = sum(1..20) in b9 → 171 = sum(1..18) in b10
210 = sum(1..20) in b10
210 = sum(1..20) in b11 → 253 = sum(1..22) in b10
210 = sum(1..20) in b12 → 300 = sum(1..24) in b10
210 = sum(1..20) in b13 → 351 = sum(1..26) in b10
210 = sum(1..20) in b14 → 406 = sum(1..28) in b10
210 = sum(1..20) in b15 → 465 = sum(1..30) in b10
210 = sum(1..20) in b16 → 528 = sum(1..32) in b10
210 = sum(1..20) in b17 → 595 = sum(1..34) in b10
210 = sum(1..20) in b18 → 666 = sum(1..36) in b10
210 = sum(1..20) in b19 → 741 = sum(1..38) in b10
210 = sum(1..20) in b20 → 820 = sum(1..40) in b10
[…]

Why is 210 always a nutty sum like that? Because the formula for sum(n1..n2) is (n1*n2) * (n2-n1+1) / 2. In all bases > 2, the sum of 1 to 20 (where 20 = 2 * b) is therefore:

(1+20) * (20-1+1) / 2 = 21 * 20 / 2 = 21 * 10 = 210

And here are nutty sums of both kinds (n1 inside n2 and n2 inside n1) for base 8:

210 = sum(1..20) in b8 → 136 = sum(1..16) in b10
12653 = sum(26..153) → 5547 = sum(22..107)
23711 = sum(71..231) → 10185 = sum(57..153)
2022323 = sum(223..2023) → 533715 = sum(147..1043)
2032472 = sum(247..2032) → 537914 = sum(167..1050)
2271564 = sum(715..2264) → 619380 = sum(461..1204)
2307422 = sum(742..2302) → 626450 = sum(482..1218)
125265253 = sum(2526..15253) → 22375083 = sum(1366..6827)


3246710 = sum(310..2467) in b8 → 871880 = sum(200..1335)
in b10
5326512 = sum(512..3265) → 1420618 = sum(330..1717)
15540671 = sum(1571..5406) → 3588537 = sum(889..2822)
21625720 = sum(2120..6257) → 4664272 = sum(1104..3247)

And for base 9:

125 = sum(2..15) in b9 → 104 = sum(2..14) in b10
210 = sum(1..20) → 171 = sum(1..18)
12858 = sum(28..158) → 8720 = sum(26..134)
1128462 = sum(128..1462) → 609824 = sum(107..1109)
1288588 = sum(288..1588) → 708344 = sum(242..1214)
1475745 = sum(475..1745) → 817817 = sum(392..1337)
2010707 = sum(107..2007) → 1070017 = sum(88..1465)
2034446 = sum(344..2046) → 1085847 = sum(283..1500)
2040258 = sum(402..2058) → 1089341 = sum(326..1511)
2063410 = sum(341..2060) → 1104768 = sum(280..1512)
2215115 = sum(215..2115) → 1191281 = sum(176..1553)
2255505 = sum(555..2205) → 1217840 = sum(455..1625)
2475275 = sum(475..2275) → 1348880 = sum(392..1688)
2735455 = sum(735..2455) → 1499927 = sum(599..1832)


1555 = sum(15..55) in b9 → 1184 = sum(14..50) in b10
155858 = sum(158..558) → 96200 = sum(134..458)
1148181 = sum(181..1481) → 622720 = sum(154..1126)
2211313 = sum(213..2113) → 1188525 = sum(174..1551)
2211747 = sum(247..2117) → 1188880 = sum(205..1555)
6358585 = sum(685..3585) → 3404912 = sum(563..2669)
7037453 = sum(703..3745) → 3745245 = sum(570..2795)
7385484 = sum(784..3854) → 3953767 = sum(643..2884)
13518167 = sum(1367..5181) → 6685072 = sum(1033..3799)
15588588 = sum(1588..5588) → 7794224 = sum(1214..4130)
17603404 = sum(1704..6034) → 8859865 = sum(1300..4405)
26750767 = sum(2667..7507) → 13201360 = sum(2005..5515)


Post-Performative Post-Scriptum…

Viz ’s Mr Logic would be a fan of nutty sums. And unlike real nuts, they wouldn’t prove fatal:

Mr Logic Goes Nuts (strip from Viz comic)

(click for full-size)