Year and Square

The simplest and in some ways greatest magic square is this:

6 1 8
7 5 3
2 9 4 (Magic total = 15)

All rows and columns sum to 15 and so do both diagonals. Using other sets of numbers, you can create an infinite number of further 3×3 magic squares. Here’s one using only prime numbers and 1:

43 01 67
61 37 13
07 73 31 (Magic=111)

The magic total is 111, which is 3 x 37, just as 15 = 3 x 5. It’s an interesting but untaxing exercise to prove that, for all 3×3 magic squares, the magic total is three times the central number. So you can use only prime numbers in a 3×3 square, but you can’t have a prime number as the magic total (unless you use fractions and so on).

And guess what? 2019 = 3 x 667, the first prime number after 666. So I decided to see if I could find an all-prime magic squares whose magic total was 2019. I found nine of them (and 9 = 3 x 3).

1117 0019 0883
0439 0673 0907
0463 1327 0229 (Magic=2019)

1069 0067 0883
0487 0673 0859
0463 1279 0277 (Magic=2019)

1063 0229 0727
0337 0673 1009
0619 1117 0283 (Magic=2019)

0883 0313 0823
0613 0673 0733
0523 1033 0463 (Magic=2019)

0619 0337 1063
1117 0673 0229
0283 1009 0727 (Magic=2019)

0463 0439 1117
1327 0673 0019
0229 0907 0883 (Magic=2019)

0463 0487 1069
1279 0673 0067
0277 0859 0883 (Magic=2019)

0379 0607 1033
1327 0673 0019
0313 0739 0967 (Magic=2019)

0523 0613 0883
1033 0673 0313
0463 0733 0823 (Magic=2019)

More Multi-Magic

The answer, I’m glad to say, is yes. The question is: Can a prime magic-square nest inside a second prime magic-square that nests inside a third prime magic-square? I asked this in Multi-Magic, where I described how a magic square is a square of numbers where all rows, all columns and both diagonals add to the same number, or magic total. This magic square consists entirely of prime numbers, or numbers divisible only by themselves and 1:

43 | 01 | 67
61 | 37 | 13
07 | 73 | 31

Base = 10, magic total = 111

It nests inside this prime magic-square, whose digit-sums in base-97 re-create it:

0619  =  [06][37] | 0097  =  [01][00] | 1123  =  [11][56]
1117  =  [11][50] | 0613  =  [06][31] | 0109  =  [01][12]
0103  =  [01][06] | 1129  =  [11][62] | 0607  =  [06][25]

Base = 97, magic total = 1839

And that prime magic-square nests inside this one:

2803  =  [1][0618] | 2281  =  [1][0096] | 3307  =  [1][1122]
3301  =  [1][1116] | 2797  =  [1][0612] | 2293  =  [1][0108]
2287  =  [1][0102] | 3313  =  [1][1128] | 2791  =  [1][0606]

Base = 2185, magic total = 8391

I don’t know whether that prime magic-square nests inside a fourth square, but a 3-nest is good for 3×3 magic squares. On the other hand, this famous 3×3 magic square is easy to nest inside an infinite series of other magic squares:

6 | 1 | 8
7 | 5 | 3
2 | 9 | 4

Base = 10, magic total = 15

It’s created by the digit-sums of this square in base-9 (“14 = 15” means that the number 14 is represented as “15” in base-9):

14 = 15 → 6 | 09 = 10 → 1 | 16 = 17 → 8
15 = 16 → 7 | 13 = 14 → 5 | 11 = 12 → 3
10 = 11 → 2 | 17 = 18 → 9 | 12 = 13 → 4

Base = 9, magic total = 39


And that square in base-9 is created by the digit-sums of this square in base-17:

30 = 1[13] → 14 | 25 = 00018 → 09 | 32 = 1[15] → 16
31 = 1[14] → 15 | 29 = 1[12] → 13 | 27 = 1[10] → 11
26 = 00019 → 10 | 33 = 1[16] → 17 | 28 = 1[11] → 12

Base = 17, magic total = 87

And so on:

62 = 1[29] → 30 | 57 = 1[24] → 25 | 64 = 1[31] → 32
63 = 1[30] → 31 | 61 = 1[28] → 29 | 59 = 1[26] → 27
58 = 1[25] → 26 | 65 = 1[32] → 33 | 60 = 1[27] → 28

Base = 33, magic total = 183

126 = 1[61] → 62 | 121 = 1[56] → 57 | 128 = 1[63] → 64
127 = 1[62] → 63 | 125 = 1[60] → 61 | 123 = 1[58] → 59
122 = 1[57] → 58 | 129 = 1[64] → 65 | 124 = 1[59] → 60

Base = 65, magic total = 375

Previously Pre-Posted (please peruse):

Multi-Magic

Multi-Magic

A magic square is a square of numbers in which all rows, all columns and both diagonals add to the same number, or magic total. The simplest magic square using distinct numbers is this:

6 1 8
7 5 3
2 9 4

It’s easy to prove that the magic total of a 3×3 magic square must be three times the central number. Accordingly, if the central number is 37, the magic total must be 111. There are lots of ways to create a magic square with 37 at its heart, but this is my favourite:

43 | 01 | 67
61 | 37 | 13
07 | 73 | 31

The square is special because all the numbers are prime, or divisible by only themselves and 1 (though 1 itself is not usually defined as prime in modern mathematics). I like the 37-square even more now that I’ve discovered it can be found inside another all-prime magic square:

0619 = 0006[37] | 0097 = 00000010 | 1123 = [11][56]
1117 = [11][50] | 0613 = 0006[31] | 0109 = 0001[12]
0103 = 00000016 | 1129 = [11][62] | 0607 = 0006[25]

Magic total = 1839

The square is shown in both base-10 and base-97. If the digit-sums of the base-97 square are calculated, this is the result (e.g., the digit-sum of 6[37][b=97] = 6 + 37 = 43):

43 | 01 | 67
61 | 37 | 13
07 | 73 | 31

This makes me wonder whether the 613-square might nest in another all-prime square, and so on, perhaps ad infinitum [Update: yes, the 613-square is a nestling]. There are certainly many nested all-prime squares. Here is square-631 in base-187:

661 = 003[100] | 379 = 00000025 | 853 = 004[105]
823 = 004[075] | 631 = 003[070] | 439 = 002[065]
409 = 002[035] | 883 = 004[135] | 601 = 003[040]

Magic total = 1893

Digit-sums:

103 | 007 | 109
079 | 073 | 067
037 | 139 | 043

Magic total = 219

There are also all-prime magic squares that have two kinds of nestlings inside them: digit-sum magic squares and digit-product magic squares. The digit-product of a number is calculated by multiplying its digits (except 0): digit-product(37) = 3 x 7 = 21, digit-product(103) = 1 x 3 = 3, and so on. In base-331, this all-prime magic square yields both a digit-sum square and a digit-product square:

503 = 1[172] | 359 = 1[028] | 521 = 1[190]
479 = 1[148] | 461 = 1[130] | 443 = 1[112]
401 = 1[070] | 563 = 1[232] | 419 = 1[088]

Magic total = 1383

Digit-sums:

173 | 029 | 191
149 | 131 | 113
071 | 233 | 089

Magic total = 393

Digit-products:

172 | 028 | 190
148 | 130 | 112
070 | 232 | 088

Magic total = 390

Here are two more twin-bearing all-prime magic squares:

Square-719 in base-451:

761 = 1[310] | 557 = 1[106] | 839 = 1[388]
797 = 1[346] | 719 = 1[268] | 641 = 1[190]
599 = 1[148] | 881 = 1[430] | 677 = 1[226]

Magic total = 2157

Digit-sums:

311 | 107 | 389
347 | 269 | 191
149 | 431 | 227

Magic total = 807

Digit-products:

310 | 106 | 388
346 | 268 | 190
148 | 430 | 226

Magic total = 804

Square-853 in base-344:

883 = 2[195] | 709 = 2[021] | 967 = 2[279]
937 = 2[249] | 853 = 2[165] | 769 = 2[081]
739 = 2[051] | 997 = 2[309] | 823 = 2[135]

Magic total = 2559

Digit-sums:

197 | 023 | 281
251 | 167 | 083
053 | 311 | 137

Magic total = 501

Digit-products:

390 | 042 | 558
498 | 330 | 162
102 | 618 | 270

Magic total = 990

Proviously Post-Posted (please peruse):

More Multi-Magic