Living Culler

When you replace a square with four smaller squares, each a quarter the size of the original, the smaller squares occupy the same area, because 4 * ¼ = 1. If you discard one sub-square, then divide each of the three remaining sub-squares into four sub-sub-square, discard one sub-sub-quare and repeat, you create fractals like those I looked at in Squaring and Paring. The fractals stay within a fixed boundary.

Square replaced with four smaller squares, each ¼th the size of the original


Animated fractal


Static fractal


This time I want to look at a slightly different process. Replace a square with nine smaller squares each a quarter the size of the original. Now the sub-squares occupy a larger area than the original, because 9 * ¼ = 2¼. If you discard — or cull — sub-squares and repeat, the resultant fractal grows beyond the original boundary. Indeed, sub-squares start to overlap, so you can use colours to represent how often a particular pixel has been covered with a square. Here is an example of this process in action:

Square replaced with nine smaller squares, each ¼th the size of the original


Animated fractal


Static fractal #1


Static fractal #2


Here are the individual stages of a more complex fractal that uses the second process:

Stage 1


Stage 2


Stage 3


Stage 4


Stage 5


Stage 6


Stage 7


Stage 8


Stage 9 (compare Fingering the Frigit and Performativizing the Polygonic)


Stage 10


Animated version


Static version #1


Static version #2


And here are some more of the fractals you can create in a similar way:


Static version #1

Static version #2


Static version #2

Static version #2

Static version #3





Various fractals in an animated gif


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.