Heads and Tells

I have a natural history book that has a photograph of a mole as it emerges from a patch of bare soil, digging itself up with its forepaws. But the photograph has been posed: the mole’s obviously dead. Its colour is wrong and you can see that there’s no tension in its body.

But the photograph might fool a hasty glance. The difference between tense life and flaccid death is small and there’s no clue in the mole’s eyes, because you can’t see them. It’s a mole, after all. In this photo, on the other hand, you can’t miss the eyes:

Ruby-tailed wasp, Chrysis ignita

Chrysis ignita, Ruby-tailed wasp

But an insect’s eyes don’t generally change when it dies, so the wasp’s eyes don’t refute or confirm a suspicion I have about the photo: that it’s also posed with a dead subject. I’m much less certain than I am about the mole, but then a dead insect is harder to read than a dead mammal. Insects have chitinous exoskeletons, not skin or fur over muscles, so their bodies don’t obviously lose tonus when they’re dead.

But something about the posture of the wasp looks wrong to me. So do its antennae: trailing on the ground, not held up. I’m far less certain than I am about the mole, but I’m suspicious. And I’m interested in my suspicion. Photographs are usually harder to read than moving pictures. There’s less information in them, because they record an object in an instant of time. You might say that you have to go by the geometry, not the trajectory.

Or lack of it. Dead things don’t have trajectories, unless an external force imposes one on them. So it’s the geometry – slumped limbs, slightly twisted heads – that betrays the true status of some of the subjects in the book Living Jewels, which collects photographs of tropical beetles. They’re museum specimens and some may have been dead for years or decades. Exoskeletons don’t corrupt and decay like skin and muscle, so the beetles retain their beauty.

And they don’t look blatantly dead. Not the way mammals would. There’s less information in an insect’s exoskeleton, so the difference between life and death is harder to read. Emotions are harder to read in an insect too. What would a photo of an angry beetle look like? Insects’ faces are immobile, like masks, which is one reason they seem so eerie and alien.

People are different: there’s lots of information in our faces and postures, let alone our voices. And sometimes imposture (and im-posture) is easy to read. We’re all familiar with false smiles and fake laughs. For me, it gets interesting when information is restricted and you can’t see someone’s face. How much can you tell from the back of a head, for example? Or a hand? Sometimes a lot. That’s why I’m interested in these photos of people adopting a stereotyped attitude of despair: slumped and heads-in-hands:

posture 1

posture 2

posture 3

posture 4

posture 5

posture 6

I don’t think any of the photos are of genuine emotion: they’re too clean and carefully lit, for one thing. And you wouldn’t expect them to be real. But the difference between posed despair and the real thing is often very slight. There are subtle differences in the outline of the body and its muscle tension. There’s a term for this in poker: tells, or slight give-aways in the posture or expression of an opposing player. The heads above tell me that the despair is being acted. So do the hands. And the outline of the bodies.

This photo I’m less certain about:

Deserter by Charles Glass

Deserter by Charles Glass

That might be real despair in a real soldier — I haven’t read the book, so I don’t know what the provenance of the photo is. The way his right foot is pointing slightly inward looks convincing to me. But I’m not certain. The photo might have been posed. If it was, the soldier was a good actor. With a posture like that, there’s little scope to express emotion: with less to do, you have to act more.

And with less information, the mind has to work harder. That’s why I find this an interesting topic. How do we read falsity or veracity in very small things like the angle of a hand or outline of a body? And will computers be able to imitate us? And then surpass us? If so, there must be mines of information buried beneath the surface of old photographs. At the moment, we intuit that information or miss it altogether. One day, computers may be able to trawl archives and come up with new facts about the psychology and relationships of historical figures, simply by reading tiny tells in expressions and postures.

No Plaice Like Olm

European Reptile and Amphibian Guide by Axel KwetEuropean Reptile and Amphibian Guide, Axel Kwet (New Holland 2009)

An attractive book about animals that are mostly attractive, sometimes strange, always interesting. It devotes photographs and descriptive text to all the reptiles and amphibians found in Europe, from tree-frogs to terrapins, from skinks to slow-worms. Some of the salamanders look like heraldic mascots, some of the lizards like enamel jewellery, and some of the toads like sumo wrestlers with exotic skin-diseases. When you leaf through the book, you’ve moving through several kinds of space: geographic and evolutionary, aesthetic and psychological. Europe is a big place and has a lot of reptilian and amphibian variety, including one species of turtle, the loggerhead, Caretta caretta, and one species of chameleon, the Mediterranean, Chamaeleo chamaeleon.

But every species, no matter how dissimilar in size and appearance, has a common ancestor: the tiny crested newt (Triturus cristatus) to the far north-west in Scotland and the two-and-a-half metre whip snake (Dolichophis caspius) to the far south-east in Greece; the sun-loving Hermann’s tortoise (Testudo hermanni), with its sturdy shell, and the pallid and worm-like olm (Proteus anguinus), which lives in “underground streams in limestone karst country along the coast from north-east Italy to Montenegro” (pg. 55). Long-limbed or limbless, sun-loving or sun-shunning, soft-skinned or scaly – they’re all variations on a common theme.

Sample page

Sample page from European Reptile and Amphibian Guide


And that’s where aesthetic and psychological space comes in, because different species and families evoke different impressions and emotions. Why do snakes look sinister and skinks look charming? But snakes are sinuous too and in a way it’s a shame that a photograph can capture their endlessly varying loops and curves as easily as it can capture the ridigity of a tortoise. At one time a book like this would have had paintings or drawings. Nowadays, it has photographs. The images are more realistic but less enchanted: the images are no longer mediated by the hand, eye and brain of an artist. But some enchantment remains: the glass lizard, Pseudopus apodus, peering from a holly bush on page 199 reminds me of Robert E. Howard’s “The God in the Bowl”, because there’s an alien intelligence in its gaze. Glass lizards are like snakes but can blink and retain “tiny, barely visible vestiges of the hind legs” (pg. 198).

Other snake-like reptiles retain vestiges of the fore-limbs too, like the Italian three-toed skink (Chalcides chalcides). The slow-worm, Anguis fragilis, has lost its limbs entirely, but doesn’t look sinister like a snake and can still blink. Elsewhere, some salamanders have lost not limbs but lungs: the Italian cave salamander, Speleomantes italicus, breathes through its skin and the lining of its mouth. So does Gené’s cave salamander, Speleomantes genei, which is found only on the island of Sardinia. It “emits an aromatic scent when touched” (pg. 54). Toads can emit toxins and snakes can inject venoms: movement in evolutionary space means movement in chemical space, because every alteration in an animal’s appearance and anatomy involves an alteration in the chemicals created by its body. But chemical space is two-fold: genotypic and phenotypic. The genes change and so the products of the genes change. The external appearance of every species is like a bookmark sticking out of the Book of Life, fixing its position in gene-space. You have to open that book to see the full recipe for the animal’s anatomy, physiology and behaviour, though not everything is specified by the genes.

Pleuronectes platessa on the sea-floor

Pleuronectes platessa on the sea-floor


The force of gravity is one ingredient in an animal’s development, for example. So is sunlight or its absence. Or water, sand, warmth, cold. The descendants of that common ancestor occupy many ecological niches. And in fact one of those descendants wrote this book: humans and all other mammals share an ancestor with frogs, skinks and vipers. Before that, we were fish. So a plaice is a distant cousin of an olm, despite the huge difference in their appearance and habitat. One is flat, one is tubular. One lives in the sea, one lives in caves. But step by step, moving through genomic and topological space, you can turn a plaice into an olm. Or into anything else in this book. Just step back through time to the common ancestor, then take another evolutionary turning. One ancestor, many descendants. That ancestor was itself one descendant among many of something even earlier.
Olm in a Slovenian cave

Olm in a Slovenian cave


But there’s another important point: once variety appeared, it began to interact with itself. Evolutionary environment includes much more than the inanimate and inorganic. We mammals share more than an ancestor with reptiles and amphibians: we’ve also shared the earth. So we’re written into their genes and some of them are probably written into ours. Mammalian predators have influenced the evolution of skin-colour and psychology, making some animals camouflaged and cautious, others obtrusive and aggressive. But it works both ways: perhaps snakes seem sinister because we’re born with snake-sensitive instincts. If it’s got no limbs and it doesn’t blink, it might have a dangerous bite. That’s why the snake section of this book seems so different to the salamander section or the frog section. But all are interesting and all are important. This is a small book with some big themes.

Brit Bot Book

Front cover of Reader's Digest Field Guide to the Wild Flowers of Britain
Reader’s Digest Field Guide to the Wild Flowers of Britain, J.R. Press et al, illustrated Leonora Box et al (1981)

This is probably the best introduction to British wild flowers that I’ve seen: drawings, photographs and text complement each other perfectly over more than four hundred pages. Despite being compact, it’s a little heavy to be a good field guide, but it would be useful in every British field, wasteland and marsh. From Indian balsam (Impatiens glandulifera) to flowering-rush (Butomus umbellatus) by way of green alkanet (Pentaglottis sempervirens), it’s got a lot, if not the lot (no Mycelis muralis, or wall lettuce, for example). The drawings are skilful, detailed, and often show the plant growing with different species in its habitat, which prepares the eye for identifying it in situ. The drawings also often have the adventitious additions that make David N. Pegler’s Pocket Guide to Mushrooms and Toadstools more enjoyable too, like the half-brick with Canadian fleabane (Conyza canadensis), the chewing-gum wrapper with sea mayweed (Matricaria maritima) and the frog with water violet (Hottonia palustris).

The drawings dominate the page devoted to each plant, but there’s a small photograph of a living specimen too, though “small” doesn’t always mean undramatic. Sea thrift (Armeria maritima) is shown growing quietly on a cliff-top with swirling sea and towering rocks beyond and below it. The photo sums up the book: wild flowers are often delicate and unobtrusive, but they illustrate some grand themes of evolution and biology, from ecological webs to mimicry, parasitism and toxicology: dead-nettles (Lamium spp.) mimick nettles, broomrape (Orobanche spp.) parasitizes broom, clover and more, and lots of British plants can kill you, sicken you or drive you insane, from hemlock (Conium maculatum) to henbane (Hyoscyamus niger). The book explores some grand themes of culture too: the text mixes serious botany with folklore, cuisine, herbalism, and literature. Pignuts (Conopodium majus) appear in The Tempest, for example, and in Ireland “were thought to be the food of leprachauns”. The etymologies aren’t always trustworthy — the “-ard” of “mustard” doesn’t mean ardente, “burning” — but that makes the book itself part of folklore and adds to the plants’ appeal. Highly recommended in this first edition.