The number 23 is always (and trivially) equal to some running total of the digits of its roots in base 2. In other bases, that’s not always true (n.b. numbers inside square brackets represent single digits in that base):

√23 = 23^(1/2) = 100.1100101110111011100111010101110111000001000... in base 2

23 = digsum(100.110010111011101110011101010111011)

23^(1/2) = 11.21011101110011111122022101121121... in base 3

23 = digsum(11.2101110111001111112202)

23^(1/2) = 4.8832850[10]89028... in base 11

23 = digsum(4.883)

23^(1/2) = 4.[14]5[15]53[14]0[12]0[14]5[13]... in base 18

23 = digsum(4.[14]5)

23^(1/2) = 4.[19]29[13][19]4[11][23][19][11][20]... in base 24

23 = digsum(4.[19])

23^(1/2) = 4.[19][22]9[21][17]5[12][10]456... in base 25

23 = digsum(4.[19])

23^(1/3) = 10.11011000000001111010101010011000101000110000001100000010010000101011... in base 2

23 = digsum(10.1101100000000111101010101001100010100011000000110000001001)

23^(1/3) = 2.21121001121111121022212100220... in base 3

23 = digsum(2.2112100112111112102)

23^(1/3) = 2.312000132222212022030003... in base 4

23 = digsum(2.31200013222221)

23^(1/3) = 2.6600365246121403... in base 8

23 = digsum(2.660036)

23^(1/3) = 2.753154453877080... in base 9

23 = digsum(2.75315)

23^(1/3) = 2.93120691571[10]001[10]... in base 11

23 = digsum(2.931206)

23^(1/3) = 2.[12]9[13]0[11]74[11]61[14]2... in base 15

23 = digsum(2.[12]9)

23^(1/3) = 2.[13]807[10][10]98[10]303... in base 16

23 = digsum(2.[13]8)

23^(1/3) = 2.[21]2[10][10][13][11][21][23][15][24][21]... in base 25

23 = digsum(2.[21])

23^(1/3) = 2.[21][24][11][20][24][22][23][25]0[11][11]... in base 26

23 = digsum(2.[21])

23^(1/4) = 10.0011000010011111110100101010011000001001011110001110101... in base 2

23 = digsum(10.001100001001111111010010101001100000100101111)

23^(1/4) = 2.1411772251404570... in base 8

23 = digsum(2.141177)

23^(1/4) = 2.1634161832077814... in base 9

23 = digsum(2.163416)

23^(1/4) = 2.33[15]2[14][13]967[10]6[12]5... in base 17

23 = digsum(2.33[15])

23^(1/4) = 2.6[15][19][11][31][17][10][18][21]30[27]... in base 34

23 = digsum(2.6[15])

23^(1/4) = 2.[12]9[63][18][41][32][37][56][58][60]1[17]... in base 64

23 = digsum(2.[12]9)

23^(1/4) = 2.[21]9[26]6[54][21][20]3[64][86][110]... in base 111

23 = digsum(2.[21])

23^(1/4) = 2.[21][30][66][22][73][19]3[15][51][24]8... in base 112

23 = digsum(2.[21])

23^(1/4) = 2.[21][52][36][111][32][104][66][40][95][33]5... in base 113

23 = digsum(2.[21])

23^(1/4) = 2.[21][74][50][62][27]19[100][70][48][89]... in base 114

23 = digsum(2.[21])

23^(1/4) = 2.[21][96][108]2[101][62][43][18][71][113][37]... in base 115

23 = digsum(2.[21])

`23^(1/5) = 1.110111110100011010011101000111111011111011000... in base 2
23 = digsum(1.11011111010001101001110100011111101)
23^(1/5) = 1.313310122131013323323010... in base 4
23 = digsum(1.31331012213101)
23^(1/5) = 1.[10]5714140[10][11][11]61... in base 12
23 = digsum(1.[10]57)
23^(1/5) = 1.[11]45210[12]3974[12]0[11]... in base 13
23 = digsum(1.[11]452)
23^(1/5) = 1.[22][17][15]788[12][20][10][16]5... in base 26
23 = digsum(1.[22])
`

And in base 10:

23^(1/7) = 1.565065607960239...

23 = digsum(1.56506)

23^(1/7) = 1.565065607960239...

23 = digsum(1.56506)

23^(1/11) = 1.32982177397055...

23 = digsum(1.3298)

23^(1/25) = 1.133624213096260543...

23 = digsum(1.13362421)

23^(1/43) = 1.075642836327515...

23 = digsum(1.07564)

23^(1/51) = 1.0634095245502272...

23 = digsum(1.063409)

23^(1/59) = 1.054581462032154...

23 = digsum(1.05458)

23^(1/74) = 1.043282031364111825...

23 = digsum(1.04328203)

23^(1/78) = 1.041017545329593513...

23 = digsum(1.04101754)

23^(1/81) = 1.039468791371841...

23 = digsum(1.03946)

23^(1/85) = 1.037576979258809...

23 = digsum(1.03757)

23^(1/86) = 1.0371320245405187874...

23 = digsum(1.037132024)

`23^(1/101) = 1.031531403111493041428...
23 = digsum(1.03153140311)
`