Primal Stream

• 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 — A000668, Mersenne primes (primes of the form 2^n – 1), at the Online Encyclopedia of Integer Sequences

• 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933 — A000043, Mersenne exponents: primes p such that 2^p – 1 is prime. Then 2^p – 1 is called a Mersenne prime. […] It is believed (but unproved) that this sequence is infinite. The data suggest that the number of terms up to exponent N is roughly K log N for some constant K.

• The largest known prime number (as of May 2022) is 282,589,933 − 1, a number which has 24,862,048 digits when written in base 10. It was found via a computer volunteered by Patrick Laroche of the Great Internet Mersenne Prime Search (GIMPS) in 2018. — Largest known prime number

Root Pursuit

Roots are hard, powers are easy. For example, the square root of 2, or √2, is the mysterious and never-ending number that is equal to 2 when multiplied by itself:

• √2 = 1·414213562373095048801688724209698078569671875376948073...

It’s hard to calculate √2. But the powers of 2, or 2^p, are the straightforward numbers that you get by multiplying 2 repeatedly by itself. It’s easy to calculate 2^p:

• 2 = 2^1
• 4 = 2^2
• 8 = 2^3
• 16 = 2^4
• 32 = 2^5
• 64 = 2^6
• 128 = 2^7
• 256 = 2^8
• 512 = 2^9
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
[...]

But there is a way to find √2 by finding 2^p, as I discovered after I asked a simple question about 2^p and 3^p. What are the longest runs of matching digits at the beginning of each power?

131072 = 2^17
129140163 = 3^17
1255420347077336152767157884641... = 2^193
1214512980685298442335534165687... = 3^193
2175541218577478036232553294038... = 2^619
2177993962169082260270654106078... = 3^619
7524389324549354450012295667238... = 2^2016
7524012611682575322123383229826... = 3^2016

There’s no obvious pattern. Then I asked the same question about 2^p and 5^p. And an interesting pattern appeared:

32 = 2^5
3125 = 5^5
316912650057057350374175801344 = 2^98
3155443620884047221646914261131... = 5^98
3162535207926728411757739792483... = 2^1068
3162020133383977882730040274356... = 5^1068
3162266908803418110961625404267... = 2^127185
3162288411569894029343799063611... = 5^127185

The digits 31622 rang a bell. Isn’t that the start of √10? Yes, it is:

• √10 = 3·1622776601683793319988935444327185337195551393252168268575...

I wrote a fast machine-code program to find even longer runs of matching initial digits. Sure enough, the pattern continued:

• 316227... = 2^2728361
• 316227... = 5^2728361
• 3162277... = 2^15917834
• 3162277... = 5^15917834
• 31622776... = 2^73482154
• 31622776... = 5^73482154
• 3162277660... = 2^961700165
• 3162277660... = 5^961700165

But why are powers of 2 and 5 generating the digits of √10? If you’re good at math, that’s a trivial question about a trivial discovery. Here’s the answer: We use base ten and 10 = 2 * 5, 10^2 = 100 = 2^2 * 5^2 = 4 * 25, 10^3 = 1000 = 2^3 * 5^3 = 8 * 125, and so on. When the initial digits of 2^p and 5^p match, those matching digits must come from the digits of √10. Otherwise the product of 2^p * 5^p would be too large or too small. Here are the records for matching initial digits multiplied by themselves:

32 = 2^5
3125 = 5^5
• 3^2 = 9

316912650057057350374175801344 = 2^98
3155443620884047221646914261131... = 5^98
• 31^2 = 961

3162535207926728411757739792483... = 2^1068
3162020133383977882730040274356... = 5^1068
• 3162^2 = 9998244

3162266908803418110961625404267... = 2^127185
3162288411569894029343799063611... = 5^127185
• 31622^2 = 999950884

• 316227... = 2^2728361
• 316227... = 5^2728361
• 316227^2 = 99999515529

• 3162277... = 2^15917834
• 3162277... = 5^15917834
• 3162277^2 = 9999995824729

• 31622776... = 2^73482154
• 31622776... = 5^73482154
• 31622776^2 = 999999961946176

• 3162277660... = 2^961700165
• 3162277660... = 5^961700165
• 3162277660^2 = 9999999998935075600

The square of each matching run falls short of 10^p. And so when the digits of 2^p and 5^p stop matching, one power must fall below √10, as it were, and one must rise above:

3 162266908803418110961625404267... = 2^127185
3·162277660168379331998893544432... = √10
3 162288411569894029343799063611... = 5^127185

In this way, 2^p * 5^p = 10^p. And that’s why matching initial digits of 2^p and 5^p generate the digits of √10. The same thing, mutatis mutandis, happens in base 6 with 2^p and 3^p, because 6 = 2 * 3:

• 2.24103122055214532500432040411... = √6 (in base 6)

24 = 2^4
213 = 3^4
225522024 = 2^34 in base 6 = 2^22 in base 10
22225525003213 = 3^34 (3^22)
2241525132535231233233555114533... = 2^1303 (2^327)
2240133444421105112410441102423... = 3^1303 (3^327)
2241055222343212030022044325420... = 2^153251 (2^15007)
2241003215453455515322105001310... = 3^153251 (3^15007)
2241032233315203525544525150530... = 2^233204 (2^20164)
2241030204225410320250422435321... = 3^233204 (3^20164)
2241031334114245140003252435303... = 2^2110415 (2^102539)
2241031103430053425141014505442... = 3^2110415 (3^102539)

And in base 30, where 30 = 2 * 3 * 5, you can find the digits of √30 in three different ways, because 30 = 2 * 15 = 3 * 10 = 5 * 6:

• 5·E9F2LE6BBPBF0F52B7385PE6E5CLN... = √30 (in base 30)

55AA4 = 2^M in base 30 = 2^22 in base 10
5NO6CQN69C3Q0E1Q7F = F^M = 15^22
5E63NMOAO4JPQD6996F3HPLIMLIRL6F... = 2^K6 (2^606)
5ECQDMIOCIAIR0DGJ4O4H8EN10AQ2GR... = F^K6 (15^606)
5E9DTE7BO41HIQDDO0NB1MFNEE4QJRF... = 2^B14 (2^9934)
5E9G5SL7KBNKFLKSG89J9J9NT17KHHO... = F^B14 (15^9934)
[...]
5R4C9 = 3^E in base 30 = 3^14 in base 10
52CE6A3L3A = A^E = 10^14
5E6SOQE5II5A8IRCH9HFBGO7835KL8A = 3^3N (3^113)
5EC1BLQHNJLTGD00SLBEDQ73AH465E3... = A^3N (10^113)
5E9FI455MQI4KOJM0HSBP3GG6OL9T8P... = 3^EJH (3^13187)
5E9EH8N8D9TR1AH48MT7OR3MHAGFNFQ... = A^EJH (10^13187)
[...]
5OCNCNRAP = 5^I in base 30 = 5^18 in base 10
54NO22GI76 = 6^I (6^18)
5EG4RAMD1IGGHQ8QS2QR0S0EH09DK16... = 5^1M7 (5^1567)
5E2PG4Q2G63DOBIJ54E4O035Q9TEJGH... = 6^1M7 (6^1567)
5E96DB9T6TBIM1FCCK8A8J7IDRCTM71... = 5^F9G (5^13786)
5E9NM222PN9Q9TEFTJ94261NRBB8FCH... = 6^F9G (6^13786)
[...]

So that’s √10, √6 and √30. But I said at the beginning that you can find √2 by finding 2^p. How do you do that? By offsetting the powers, as it were. With 2^p and 5^p, you can find the digits of √10. With 2^(p+1) and 5^p, you can find the digits of √2 and √20, because 2^(p+1) * 5^p = 2 * 2^p * 5^p = 2 * 10^p:

•  √2 = 1·414213562373095048801688724209698078569671875376948073...
• √20 = 4·472135954999579392818347337462552470881236719223051448...

16 = 2^4
125 = 5^3
140737488355328 = 2^47
142108547152020037174224853515625 = 5^46
1413... = 2^243
1414... = 5^242
14141... = 2^6651
14142... = 5^6650
141421... = 2^35389
141420... = 5^35388
4472136... = 2^162574
4472135... = 5^162573
141421359... = 2^3216082
141421352... = 5^3216081
447213595... = 2^172530387
447213595... = 5^172530386
[...]

God Give Me Benf’

In “Wake the Snake”, I looked at the digits of powers of 2 and mentioned a fascinating mathematical phenomenon known as Benford’s law, which governs — in a not-yet-fully-explained way — the leading digits of a wide variety of natural and human statistics, from the lengths of rivers to the votes cast in elections. Benford’s law also governs a lot of mathematical data. It states, for example, that the first digit, d, of a power of 2 in base b (except b = 2, 4, 8, 16…) will occur with the frequency logb(1 + 1/d). In base 10, therefore, Benford’s law states that the digits 1..9 will occur with the following frequencies at the beginning of 2^p:

1: 30.102999%
2: 17.609125%
3: 12.493873%
4: 09.691001%
5: 07.918124%
6: 06.694678%
7: 05.799194%
8: 05.115252%
9: 04.575749%

Here’s a graph of the actual relative frequencies of 1..9 as the leading digit of 2^p (open images in a new window if they appear distorted):


And here’s a graph for the predicted frequencies of 1..9 as the leading digit of 2^p, as calculated by the log(1+1/d) of Benford’s law:


The two graphs agree very well. But Benford’s law applies to more than one leading digit. Here are actual and predicted graphs for the first two leading digits of 2^p, 10..99:



And actual and predicted graphs for the first three leading digits of 2^p, 100..999:



But you can represent the leading digit of 2^p in another way: using an adaptation of the famous Ulam spiral. Suppose powers of 2 are represented as a spiral of squares that begins like this, with 2^0 in the center, 2^1 to the right of center, 2^2 above 2^1, and so on:

←←←⮲
432↑
501↑
6789

If the digits of 2^p start with 1, fill the square in question; if the digits of 2^p don’t start with 1, leave the square empty. When you do this, you get this interesting pattern (the purple square at the very center represents 2^0):

Ulam-like power-spiral for 2^p where 1 is the leading digit


Here’s a higher-resolution power-spiral for 1 as the leading digit:

Power-spiral for 2^p, leading-digit = 1 (higher resolution)


And here, at higher resolution still, are power-spirals for all the possible leading digits of 2^p, 1..9 (some spirals look very similar, so you have to compare those ones carefully):

Power-spiral for 2^p, leading-digit = 1 (very high resolution)


Power-spiral for 2^p, leading-digit = 2


Power-spiral for 2^p, ld = 3


Power-spiral for 2^p, ld = 4


Power-spiral for 2^p, ld = 5


Power-spiral for 2^p, ld = 6


Power-spiral for 2^p, ld = 7


Power-spiral for 2^p, ld = 8


Power-spiral for 2^p, ld = 9


Power-spiral for 2^p, ld = 1..9 (animated)


Now try the power-spiral of 2^p, ld = 1, in some other bases:

Power-spiral for 2^p, leading-digit = 1, base = 9


Power-spiral for 2^p, ld = 1, b = 15


You can also try power-spirals for other n^p. Here’s 3^p:

Power-spiral for 3^p, ld = 1, b = 10


Power-spiral for 3^p, ld = 2, b = 10


Power-spiral for 3^p, ld = 1, b = 4


Power-spiral for 3^p, ld = 1, b = 7


Power-spiral for 3^p, ld = 1, b = 18


Elsewhere Other-Accessible…

Wake the Snake — an earlier look at the digits of 2^p

Wake the Snake

In my story “Kopfwurmkundalini”, I imagined the square root of 2 as an infinitely long worm or snake whose endlessly varying digit-segments contained all stories ever (and never) written:

• √2 = 1·414213562373095048801688724209698078569671875376948073…

But there’s another way to get all stories ever written from the number 2. You don’t look at the root(s) of 2, but at the powers of 2:

• 2 = 2^1 = 2
• 4 = 2^2 = 2*2
• 8 = 2^3 = 2*2*2
• 16 = 2^4 = 2*2*2*2
• 32 = 2^5 = 2*2*2*2*2
• 64 = 2^6 = 2*2*2*2*2*2
• 128 = 2^7 = 2*2*2*2*2*2*2
• 256 = 2^8 = 2*2*2*2*2*2*2*2
• 512 = 2^9 = 2*2*2*2*2*2*2*2*2
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
• 2097152 = 2^21
• 4194304 = 2^22
• 8388608 = 2^23
• 16777216 = 2^24
• 33554432 = 2^25
• 67108864 = 2^26
• 134217728 = 2^27
• 268435456 = 2^28
• 536870912 = 2^29
• 1073741824 = 2^30
[...]

The powers of 2 are like an ever-lengthening snake swimming across a pool. The snake has an endlessly mutating head and a rhythmically waving tail with a regular but ever-more complex wake. That is, the leading digits of 2^p don’t repeat but the trailing digits do. Look at the single final digit of 2^p, for example:

• 02 = 2^1
• 04 = 2^2
• 08 = 2^3
• 16 = 2^4
• 32 = 2^5
• 64 = 2^6
• 128 = 2^7
• 256 = 2^8
• 512 = 2^9
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
• 2097152 = 2^21
• 4194304 = 2^22
[...]

The final digit of 2^p falls into a loop: 2 → 4 → 8 → 6 → 2 → 4→ 8…

Now try the final two digits of 2^p:

02 = 2^1
04 = 2^2
08 = 2^3
16 = 2^4
32 = 2^5
64 = 2^6
• 128 = 2^7
• 256 = 2^8
• 512 = 2^9
• 1024 = 2^10
• 2048 = 2^11
• 4096 = 2^12
• 8192 = 2^13
• 16384 = 2^14
• 32768 = 2^15
• 65536 = 2^16
• 131072 = 2^17
• 262144 = 2^18
• 524288 = 2^19
• 1048576 = 2^20
• 2097152 = 2^21
• 4194304 = 2^22
• 8388608 = 2^23
• 16777216 = 2^24
• 33554432 = 2^25
• 67108864 = 2^26
• 134217728 = 2^27
• 268435456 = 2^28
• 536870912 = 2^29
• 1073741824 = 2^30
[...]

Now there’s a longer loop: 02 → 04 → 08 → 16 → 32 → 64 → 28 → 56 → 12 → 24 → 48 → 96 → 92 → 84 → 68 → 36 → 72 → 44 → 88 → 76 → 52 → 04 → 08 → 16 → 32 → 64 → 28… Any number of trailing digits, 1 or 2 or one trillion, falls into a loop. It just takes longer as the number of trailing digits increases.

That’s the tail of the snake. At the other end, the head of the snake, the digits don’t fall into a loop (because of the carries from the lower digits). So, while you can get only 2, 4, 8 and 6 as the final digits of 2^p, you can get any digit but 0 as the first digit of 2^p. Indeed, I conjecture (but can’t prove) that not only will all integers eventually appear as the leading digits of 2^p, but they will do so infinitely often. Think of a number and it will appear as the leading digits of 2^p. Let’s try the numbers 1, 12, 123, 1234, 12345…:

16 = 2^4
128 = 2^7
12379400392853802748... = 2^90
12340799625835686853... = 2^1545
12345257952011458590... = 2^34555
12345695478410965346... = 2^63293
12345673811591269861... = 2^4869721
12345678260232358911... = 2^5194868
12345678999199154389... = 2^62759188

But what about the numbers 9, 98, 987, 986, 98765… as leading digits of 2^p? They don’t appear as quickly:

9007199254740992 = 2^53
98079714615416886934... = 2^186
98726397006685494828... = 2^1548
98768356967522174395... = 2^21257
98765563827287722773... = 2^63296
98765426081858871289... = 2^5194871
98765430693066680199... = 2^11627034
98765432584491513519... = 2^260855656
98765432109571471006... = 2^1641098748

Why do fragments of 123456789 appear much sooner than fragments of 987654321? Well, even though all integers occur infinitely often as leading digits of 2^p, some integers occur more often than others, as it were. The leading digits of 2^p are actually governed by a fascinating mathematical phenomenon known as Benford’s law, which states, for example, that the single first digit, d, will occur with the frequency log10(1 + 1/d). Here are the actual frequencies of 1..9 for all powers of 2 up to 2^101000, compared with the estimate by Benford’s law:

1: 30% of leading digits ↔ 30.1% estimated
2: 17.55% ↔ 17.6%
3: 12.45% ↔ 12.49%
4: 09.65% ↔ 9.69%
5: 07.89% ↔ 7.92%
6: 06.67% ↔ 6.69%
7: 05.77% ↔ 5.79%
8: 05.09% ↔ 5.11%
9: 04.56% ↔ 4.57%

Because (inter alia) 1 appears as the first digit of 2^p far more often than 9 does, the fragments of 123456789 appear faster than the fragments of 987654321. Mutatis mutandis, the same applies in all other bases (apart from bases that are powers of 2, where there’s a single leading digit, 1, 2, 4, 8…, followed by 0s). But although a number like 123456789 occurs much frequently than 987654321 in 2^p expressed in base 10 (and higher), both integers occur infinitely often.

As do all other integers. And because stories can be expressed as numbers, all stories ever (and never) written appear in the powers of 2. Infinitely often. You’ll just have to trim the tail of the story-snake.

Power Trap

Back in 2015, in an article called “Power Trip”, I looked at an unfamiliar sequence created by deleting zeroes from a familiar sequence. And I made a serious but fortunately-not-fatal error in my reasoning. The familiar sequence was powers of 2:

• 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576…

This is what happens when you delete the zeroes from the powers of 2 (and carry on multiplying by two):

2 * 2 = 4
4 * 2 = 8
8 * 2 = 16
16 * 2 = 32
32 * 2 = 64
64 * 2 = 128
128 * 2 = 256
256 * 2 = 512
512 * 2 = 1024 → 124
124 * 2 = 248
248 * 2 = 496
496 * 2 = 992
992 * 2 = 1984
1984 * 2 = 3968
3968 * 2 = 7936
7936 * 2 = 15872
15872 * 2 = 31744
31744 * 2 = 63488
63488 * 2 = 126976
126976 * 2 = 253952
253952 * 2 = 507904 → 5794
5794 * 2 = 11588
11588 * 2 = 23176
23176 * 2 = 46352
46352 * 2 = 92704 → 9274…


I pointed out that this new sequence has to repeat, because deleting zeroes prevents n growing beyond a certain size. Eventually, then, a number will repeat and the sequence will fall into a loop: “This happens at step 526 with 366784, which matches 366784 at step 490.”

But that’s deleting every zero. What happens if you delete every second zero? That is, you start with a zero-count, zc, of 0. When you meet the first zero in the sequence, zc = zc + 1 = 1. When you meet the second zero in the sequence, zc = zc + 1 = 2. So you delete that second zero and reset zc to 0. The first zero occurs when 1024 = 2 * 512, so 1024 is left as it is. The second zero occurs when 2 * 1024 = 2048, so 2048 becomes 248. The sequence for zc=2 looks like this:

1 * 2 = 2
2 * 2 = 4
4 * 2 = 8
8 * 2 = 16
16 * 2 = 32
32 * 2 = 64
64 * 2 = 128
128 * 2 = 256
256 * 2 = 512
512 * 2 = 1024 → 1024
1024 * 2 = 2048 → 248
248 * 2 = 496
496 * 2 = 992
992 * 2 = 1984
1984 * 2 = 3968
3968 * 2 = 7936
7936 * 2 = 15872
15872 * 2 = 31744
31744 * 2 = 63488
63488 * 2 = 126976
126976 * 2 = 253952
253952 * 2 = 507904 → 50794
50794 * 2 = 101588 → 101588
101588 * 2 = 203176 → 23176
23176 * 2 = 46352
46352 * 2 = 92704 → 92704
92704 * 2 = 185408 → 18548

Again, the sequence has to repeat and I claimed that it did so “at step 9134 with 5458864, which matches 5458864 at step 4166”. I also said that I hadn’t found the loop for the delete-every-third-zero sequence, where zc=3. Coming back to this type of sequence in 2021, I wrote a much faster machine-code program to see if I could find the answer for zc=3. And I thought that I had. My program said that the sequence for zc=3 repeats at step 166369 with 6138486272, which matches 6138486272 at step 25429.

Or does it repeat? Does it match? In 2021 I suddenly realized that I had neglected to consider something vital back in 2015: whether the zero-count was the same when the sequence appeared to repeat. Take the zc=2 sequence. If zc=0 at at step 4166 and zc=1 at 9134 (or vice versa), the sequence isn’t in a loop, because it will be deleting a different set of zeroes after step 4166 than it is after step 9134.

I checked whether the zero-count for that sequence is the same when the sequence appears to repeat. Fortunately, it is the same and the zero-delete sequence for zc=2 does indeed begin looping “at step 9134 with 5458864, which matches 5458864 at step 4166”.

So my error wasn’t fatal for the zc=2 sequence. But what about the zc=3 sequence? Alas, the zero-count is different for 6138486272 at step 166369 than for 6138486272 at step 25429. The sequence doesn’t behave the same after those steps and hasn’t looped. I needed to find the n1 = n2 for steps s1 and s2 where zc1 = zc2. And even with the much faster machine-code program it took some time. But I can now say that 958718377984 at step 379046, with zc=0, matches 958718377984 at step 200906, with zc=0.

Z-Fall

Do you want a haunting literary image? You’ll find one of the strangest and strongest in Borges’ “La Biblioteca de Babel” (1941), which is narrated by a librarian in an infinite library. The librarian anticipates the end of his life:

Muerto, no faltarán manos piadosas que me tiren por la baranda; mi sepultura será el aire insondable; mi cuerpo se hundirá largamente y se corromperá y disolverá en el viento engenerado por la caída, que es infinita. — “La Biblioteca de Babel

When I am dead, compassionate hands will throw me over the railing; my tomb will be the unfathomable air, my body will sink for ages, and will decay and dissolve in the wind engendered by my fall, which shall be infinite. — “The Library of Babel” (translation by Andrew Hurley)

The infinite fall is the haunting image. Falling is powerful; falling for ever is more powerful still. But it can’t happen in reality: soon or later a fall has to end. Objects crash to earth or splash into the ocean. Of course, you could call being in orbit a kind of infinite fall, but it doesn’t have the same power.

However, there’s more kinds of falling than one and I think the arithmophile Borges would have liked one of the other kinds a lot. Numbers can fall — you sum their digits, take the sum from the original number, and repeat. That is, n = n – digsum(n). Here are some examples:


10 → 9 → 0
100 → 99 → 81 → 72 → 63 → 54 → 45 → 36 → 27 → 18 → 9 → 0
1000 → 999 → 972 → 954 → 936 → 918 → 900 → 891 → 873 → 855 → 837 → 819 → 801 → 792 → 774 → 756 → 738 → 720 → 711 → 702 → 693 → 675 → 657 → 639 → 621 → 612 → 603 → 594 → 576 → 558 → 540 → 531 → 522 → 513 → 504 → 495 → 477 → 459 → 441 → 432 → 423 → 414 → 405 → 396 → 378 → 360 → 351 → 342 → 333 → 324 → 315 → 306 → 297 → 279 → 261 → 252 → 243 → 234 → 225 → 216 → 207 → 198 → 180 → 171 → 162 → 153 → 144 → 135 → 126 → 117 → 108 → 99 → 81 → 72 → 63 → 54 → 45 → 36 → 27 → 18 → 9 → 0

The details are different in other bases, like 2 or 16, but the destination is the same. The number falls to zero and the fall stops, because digsum(0) = 0:


102 → 1 → 0 (n=2)
100 → 11 → 1 → 0 (n=4)
1000 → 111 → 100 → 11 → 1 → 0 (n=8)
10000 → 1111 → 1011 → 1000 → 111 → 100 → 11 → 1 → 0 (n=16)
100000 → 11111 → 11010 → 10111 → 10011 → 10000 → 1111 → 1011 → 1000 → 111 → 100 → 11 → 1 → 0 (n=32)
1000000 → 111111 → 111001 → 110101 → 110001 → 101110 → 101010 → 100111 → 100011 → 100000 → 11111 → 11010 → 10111 → 10011 → 10000 → 1111 → 1011 → 1000 → 111 → 100 → 11 → 1 → 0 (n=64)


1013 → C → 0 (n=13)
100 → CC → B1 → A2 → 93 → 84 → 75 → 66 → 57 → 48 → 39 → 2A → 1B → C → 0 (n=169)
1000 → CCC → CA2 → C84 → C66 → C48 → C2A → C0C → BC1 → BA3 → B85 → B67 → B49 → B2B → B10 → B01 → AC2 → AA4 → A86 → A68 → A4A → A2C → A11 → A02 → 9C3 → 9A5 → 987 → 969 → 94B → 930 → 921 → 912 → 903 → 8C4 → 8A6 → 888 → 86A → 84C → 831 → 822 → 813 → 804 → 7C5 → 7A7 → 789 → 76B → 750 → 741 → 732 → 723 → 714 → 705 → 6C6 → 6A8 → 68A → 66C → 651 → 642 → 633 → 624 → 615 → 606 → 5C7 → 5A9 → 58B → 570 → 561 → 552 → 543 → 534 → 525 → 516 → 507 → 4C8 → 4AA → 48C → 471 → 462 → 453 → 444 → 435 → 426 → 417 → 408 → 3C9 → 3AB → 390 → 381 → 372 → 363 → 354 → 345 → 336 → 327 → 318 → 309 → 2CA → 2AC → 291 → 282 → 273 → 264 → 255 → 246 → 237 → 228 → 219 → 20A → 1CB → 1B0 → 1A1 → 192 → 183 → 174 → 165 → 156 → 147 → 138 → 129 → 11A → 10B → CC → B1 → A2 → 93 → 84 → 75 → 66 → 57 → 48 → 39 → 2A → 1B → C → 0 (n=2197)

But the fall to 0 made me think of another kind of number-fall. What if you count the 0s in a number, take that count away from the original number, and repeat? You could call this a z-fall (pronounced zee-fall). But unlike free-fall, z-fall doesn’t last long:


10 → 9
100 → 98
1000 → 997
10000 → 9996

And the number always comes to rest far above the ground, as it were. In a fall using digsum(n), the number descends to 0. In a fall using zerocount(n), the number never even reaches 1. At least, never in any base higher than 2. But in base-2, you get this:


10 → 1 (n=2)
100 → 10 → 1 (n=4)
1000 → 101 → 100 → 10 → 1 (n=8)
10000 → 1100 → 1010 → 1000 → 101 → 100 → 10 → 1 (n=16)
100000 → 11011 → 11010 → 11000 → 10101 → 10011 → 10001 → 1110 → 1101 → 1100 → 1010 → 1000 → 101 → 100 → 10 → 1 (n=32)
1000000 → 111010 → 111000 → 110101 → 110011 → 110001 → 101110 → 101100 → 101001 → 100110 → 100011 → 100000 → 11011 → 11010 → 11000 → 10101 → 10011 → 10001 → 1110 → 1101 → 1100 → 1010 → 1000 → 101 → 100 → 10 → 1 (n=64)

When I saw that, I had a wonderful vision of how even the biggest numbers in base 2 could z-fall all the way to 1. Almost all binary numbers contain 0, after all. So the z-falls would get longer and longer, paying tribute to la caída infinita, the infinite fall, of the librarian in Borges’ Library of Babel. Alas, binary numbers don’t behave like that. The highest number in base 2 that z-falls to 1 is this:


1010001 → 1001101 → 1001010 → 1000110 → 1000010 → 111101 → 111100 → 111010 → 111000 → 110101 → 110011 → 110001 → 101110 → 101100 → 101001 → 100110 → 100011 → 100000 → 11011 → 11010 → 11000 → 10101 → 10011 → 10001 → 1110 → 1101 → 1100 → 1010 → 1000 → 101 → 100 → 10 → 1 (n=81)

Above that, binary numbers land on what you might call a shelf:


1010010=82 → 1001110=78 → 1001011=75 → 1001000=72 → 1000011=67 → 111111=63 (n=82)

If binary numbers are an infinite tall mountain, 1 is at the foot of the mountain. 111111 = 63 is like a shelf a little way above the foot. But I conjecture that arbitrarily large binary numbers will z-fall to 63. For example, no matter how large the power of 2, I conjecture that it will z-fall to 63:


10 → 1 : 2 → 1 (count of steps=2)
100 ... → 1 : 4 ... → 1 (c=3)
1000 ... → 1 : 8 ... → 1 (c=5)
10000 ... → 1 : 16 ... → 1 (c=8)
100000 ... → 1 : 32 ... → 1 (c=16)
1000000 ... → 1 : 64 ... → 1 (c=27)
10000000 ... → 111111 : 128 ... → 63 (c=21)
100000000 ... → 111111 : 256 ... → 63 (c=60)
1000000000 ... → 111111 : 512 ... → 63 (c=130)
10000000000 ... → 111111 : 1024 ... → 63 (c=253)
100000000000 ... → 111111 : 2048 ... → 63 (c=473)
1000000000000 ... → 111111 : 4096 ... → 63 (c=869)
10000000000000 ... → 111111 : 8192 ... → 63 (c=1586)
100000000000000 ... → 111111 : 16384 ... → 63 (c=2899)
1000000000000000 ... → 111111 : 32768 ... → 63 (c=5327)
10000000000000000 ... → 111111 : 65536 ... → 63 (c=9851)
100000000000000000 ... → 111111 : 131072 ... → 63 (c=18340)
1000000000000000000 ... → 111111 : 262144 ... → 63 (c=34331)
10000000000000000000 ... → 111111 : 524288 ... → 63 (c=64559)
100000000000000000000 ... → 111111 : 1048576 ... → 63 (c=121831)
1000000000000000000000 ... → 111111 : 2097152 ... → 63 (c=230573)
10000000000000000000000 ... → 111111 : 4194304 ... → 63 (c=437435)
100000000000000000000000 ... → 111111 : 8388608 ... → 63 (c=831722)
1000000000000000000000000 ... → 111111 : 16777216 ... → 63 (c=1584701)
10000000000000000000000000 ... → 111111 : 33554432 ... → 63 (c=3025405)
100000000000000000000000000 ... → 111111 : 67108864 ... → 63 (c=5787008)
1000000000000000000000000000 ... → 111111 : 134217728 ... → 63 (c=11089958)
10000000000000000000000000000 ... → 111111 : 268435456 ... → 63 (c=21290279)
100000000000000000000000000000 ... → 111111 : 536870912 ... → 63 (c=40942711)
1000000000000000000000000000000 ... → 111111 : 1073741824 ... → 63 (c=78864154)

So the z-falls get longer and longer. But z-falling to 63 doesn’t have the power of z-falling to 1.

For Revver and Fevver

This shape reminds me of the feathers on an exotic bird:

feathers

(click or open in new window for full size)


feathers_anim

(animated version)


The shape is created by reversing the digits of a number, so you could say it involves revvers and fevvers. I discovered it when I was looking at the Halton sequence. It’s a sequence of fractions created according to a simple but interesting rule. The rule works like this: take n in base b, reverse it, and divide reverse(n) by the first power of b that is greater than n.

For example, suppose n = 6 and b = 2. In base 2, 6 = 110 and reverse(110) = 011 = 11 = 3. The first power of 2 that is greater than 6 is 2^3 or 8. Therefore, halton(6) in base 2 equals 3/8. Here is the same procedure applied to n = 1..20:

1: halton(1) = 1/10[2] → 1/2
2: halton(10) = 01/100[2] → 1/4
3: halton(11) = 11/100[2] → 3/4
4: halton(100) = 001/1000[2] → 1/8
5: halton(101) = 101/1000[2] → 5/8
6: halton(110) = 011/1000 → 3/8
7: halton(111) = 111/1000 → 7/8
8: halton(1000) = 0001/10000 → 1/16
9: halton(1001) = 1001/10000 → 9/16
10: halton(1010) = 0101/10000 → 5/16
11: halton(1011) = 1101/10000 → 13/16
12: halton(1100) = 0011/10000 → 3/16
13: halton(1101) = 1011/10000 → 11/16
14: halton(1110) = 0111/10000 → 7/16
15: halton(1111) = 1111/10000 → 15/16
16: halton(10000) = 00001/100000 → 1/32
17: halton(10001) = 10001/100000 → 17/32
18: halton(10010) = 01001/100000 → 9/32
19: halton(10011) = 11001/100000 → 25/32
20: halton(10100) = 00101/100000 → 5/32…

Note that the sequence always produces reduced fractions, i.e. fractions in their lowest possible terms. Once 1/2 has appeared, there is no 2/4, 4/8, 8/16…; once 3/4 has appeared, there is no 6/8, 12/16, 24/32…; and so on. If the fractions are represented as points in the interval [0,1], they look like this:

line1_1_2

point = 1/2


line2_1_4

point = 1/4


line3_3_4

point = 3/4


line4_1_8

point = 1/8


line5_5_8

point = 5/8


line6_3_8

point = 3/8


line7_7_8

point = 7/8


line_b2_anim

(animated line for base = 2, n = 1..63)


It’s apparent that Halton points in base 2 will evenly fill the interval [0,1]. Now compare a Halton sequence in base 3:

1: halton(1) = 1/10[3] → 1/3
2: halton(2) = 2/10[3] → 2/3
3: halton(10) = 01/100[3] → 1/9
4: halton(11) = 11/100[3] → 4/9
5: halton(12) = 21/100[3] → 7/9
6: halton(20) = 02/100 → 2/9
7: halton(21) = 12/100 → 5/9
8: halton(22) = 22/100 → 8/9
9: halton(100) = 001/1000 → 1/27
10: halton(101) = 101/1000 → 10/27
11: halton(102) = 201/1000 → 19/27
12: halton(110) = 011/1000 → 4/27
13: halton(111) = 111/1000 → 13/27
14: halton(112) = 211/1000 → 22/27
15: halton(120) = 021/1000 → 7/27
16: halton(121) = 121/1000 → 16/27
17: halton(122) = 221/1000 → 25/27
18: halton(200) = 002/1000 → 2/27
19: halton(201) = 102/1000 → 11/27
20: halton(202) = 202/1000 → 20/27
21: halton(210) = 012/1000 → 5/27
22: halton(211) = 112/1000 → 14/27
23: halton(212) = 212/1000 → 23/27
24: halton(220) = 022/1000 → 8/27
25: halton(221) = 122/1000 → 17/27
26: halton(222) = 222/1000 → 26/27
27: halton(1000) = 0001/10000 → 1/81
28: halton(1001) = 1001/10000 → 28/81
29: halton(1002) = 2001/10000 → 55/81
30: halton(1010) = 0101/10000 → 10/81

And here is an animated gif representing the Halton sequence in base 3 as points in the interval [0,1]:

line_b3_anim


Halton points in base 3 also evenly fill the interval [0,1]. What happens if you apply the Halton sequence to a two-dimensional square rather a one-dimensional line? Suppose the bottom left-hand corner of the square has the co-ordinates (0,0) and the top right-hand corner has the co-ordinates (1,1). Find points (x,y) inside the square, with x supplied by the Halton sequence in base 2 and y supplied by the Halton sequence in base 3. The square will gradually fill like this:

square1

x = 1/2, y = 1/3


square2

x = 1/4, y = 2/3


square3

x = 3/4, y = 1/9


square4

x = 1/8, y = 4/9


square5

x = 5/8, y = 7/9


square6

x = 3/8, y = 2/9


square7

x = 7/8, y = 5/9


square8

x = 1/16, y = 8/9


square9

x = 9/16, y = 1/27…


square_anim

animated square


Read full page: For Revver and Fevver

Shareway to Seven

An adaptation of an interesting distribution puzzle from Joseph Degrazia’s Math is Fun (1954):

After a successful year of plunder on the high seas, a pirate ship returns to its island base. The pirate chief, who enjoys practical jokes and has a mathematical bent, hands out heavy bags of gold coins to his seven lieutenants. But when the seven lieutenants open the bags, they discover that each of them has received a different number of coins.

They ask the captain why they don’t have equal shares. The pirate chief laughs and tells them to re-distribute the coins according to the following rule: “At each stage, the lieutenant with most coins must give each of his comrades as many coins as that comrade already possesses.”

The lieutenants follow the rule and each one in turn becomes the lieutenant with most coins. When the seventh distribution is over, all seven of them have 128 coins, the coins are fairly distributed, and the rule no longer applies.

The puzzle is this: How did the pirate captain originally allocate the coins to his lieutenants?


If you start at the beginning and work forward, you’ll have to solve a fiendishly complicated set of simultaneous equations. If you start at the end and work backwards, the puzzle will resolve itself almost like magic.

The puzzle is actually about powers of 2, because 128 = 2^7 and when each of six lieutenants receives as many coins as he already has, he doubles his number of coins. Accordingly, before the seventh and final distribution, six of the lieutenants must have had 64 coins and the seventh must have had 128 + 6 * 64 coins = 512 coins.

At the stage before that, five of the lieutenants must have had 32 coins (so that they will have 64 coins after the sixth distribution), one must have had 256 coins (so that he will have 512 coins after the sixth distribution), and one must have had 64 + 5 * 32 + 256 coins = 480 coins. And so on. This is what the solution looks like:

128, 128, 128, 128, 128, 128, 128
512, 64, 64, 64, 64, 64, 64
256, 480, 32, 32, 32, 32, 32
128, 240, 464, 16, 16, 16, 16
64, 120, 232, 456, 8, 8, 8
32, 60, 116, 228, 452, 4, 4
16, 30, 58, 114, 226, 450, 2
8, 15, 29, 57, 113, 225, 449

So the pirate captain must have originally allocated the coins like this: 8, 15, 29, 57, 113, 225, 449 (note how 8 * 2 – 1 = 15, 15 * 2 – 1 = 29, 29 * 2 – 1 = 57…).

The puzzle can be adapted to other powers. Suppose the rule runs like this: “At each stage, the lieutenant with most coins must give each of his comrades twice as many coins as that comrade already possesses.” If the pirate captain has six lieutenants, after each distribution each of five will have n + 2n = three times the number of coins that he previously possessed. The six lieutenants each end up with 729 coins = 3^6 coins and the solution looks like this:

13, 37, 109, 325, 973, 2917
39, 111, 327, 975, 2919, 3
117, 333, 981, 2925, 9, 9
351, 999, 2943, 27, 27, 27
1053, 2997, 81, 81, 81, 81
3159, 243, 243, 243, 243, 243
729, 729, 729, 729, 729, 729

For powers of 4, the rule runs like this: “At each stage, the lieutenant with most coins must give each of his comrades three times as many coins as that comrade already possesses.” With five lieutenants, each of them ends up with 1024 coins = 4^5 coins and the solution looks like this:

16, 61, 241, 961, 3841
64, 244, 964, 3844, 4
256, 976, 3856, 16, 16
1024, 3904, 64, 64, 64
4096, 256, 256, 256, 256
1024, 1024, 1024, 1024, 1024

For powers of 5, the rule runs like this: “At each stage, the lieutenant with most coins must give each of his comrades four times as many coins as that comrade already possesses.” With four lieutenants, each of them ends up with 625 coins = 5^4 coins and the solution looks like this:

17, 81, 401, 2001
85, 405, 2005, 5
425, 2025, 25, 25
2125, 125, 125, 125
625, 625, 625, 625

Power Trip

Here are the first few powers of 2:

2 = 1 * 2
4 = 2 * 2
8 = 4 * 2
16 = 8 * 2
32 = 16 * 2
64 = 32 * 2
128 = 64 * 2
256 = 128 * 2
512 = 256 * 2
1024 = 512 * 2
2048 = 1024 * 2
4096 = 2048 * 2
8192 = 4096 * 2
16384 = 8192 * 2
32768 = 16384 * 2
65536 = 32768 * 2
131072 = 65536 * 2
262144 = 131072 * 2
524288 = 262144 * 2
1048576 = 524288 * 2
2097152 = 1048576 * 2
4194304 = 2097152 * 2
8388608 = 4194304 * 2
16777216 = 8388608 * 2
33554432 = 16777216 * 2
67108864 = 33554432 * 2…

As you can see, it’s a one-way power-trip: the numbers simply get larger. But what happens if you delete the digit 0 whenever it appears in a result? For example, 512 * 2 = 1024, which becomes 124. If you apply this rule, the sequence looks like this:

2 * 2 = 4
4 * 2 = 8
8 * 2 = 16
16 * 2 = 32
32 * 2 = 64
64 * 2 = 128
128 * 2 = 256
256 * 2 = 512
512 * 2 = 1024 → 124
124 * 2 = 248
248 * 2 = 496
496 * 2 = 992
992 * 2 = 1984
1984 * 2 = 3968
3968 * 2 = 7936
7936 * 2 = 15872
15872 * 2 = 31744
31744 * 2 = 63488
63488 * 2 = 126976
126976 * 2 = 253952
253952 * 2 = 507904 → 5794
5794 * 2 = 11588
11588 * 2 = 23176
23176 * 2 = 46352
46352 * 2 = 92704 → 9274…

Is this a power-trip? Not quite: it’s a return trip, because the numbers can never grow beyond a certain size and the sequence falls into a loop. If the result 2n contains a zero, then zerodelete(2n) < n, so the sequence has an upper limit and a number will eventually occur twice. This happens at step 526 with 366784, which matches 366784 at step 490.

The rate at which we delete zeros can obviously be varied. Call it 1:z. The sequence above sets z = 1, so 1:z = 1:1. But what if z = 2, so that 1:z = 1:2? In other words, the procedure deletes every second zero. The first zero occurs when 1024 = 2 * 512, so 1024 is left as it is. The second zero occurs when 2 * 1024 = 2048, so 2048 becomes 248. When z = 2 and every second zero is deleted, the sequence begins like this:

1 * 2 = 2
2 * 2 = 4
4 * 2 = 8
8 * 2 = 16
16 * 2 = 32
32 * 2 = 64
64 * 2 = 128
128 * 2 = 256
256 * 2 = 512
512 * 2 = 1024 → 1024
1024 * 2 = 2048 → 248
248 * 2 = 496
496 * 2 = 992
992 * 2 = 1984
1984 * 2 = 3968
3968 * 2 = 7936
7936 * 2 = 15872
15872 * 2 = 31744
31744 * 2 = 63488
63488 * 2 = 126976
126976 * 2 = 253952
253952 * 2 = 507904 → 50794
50794 * 2 = 101588 → 101588
101588 * 2 = 203176 → 23176
23176 * 2 = 46352
46352 * 2 = 92704 → 92704
92704 * 2 = 185408 → 18548

This sequence also has a ceiling and repeats at step 9134 with 5458864, which matches 5458864 at step 4166. And what about the sequence in which z = 3 and every third zero is deleted? Does this have a ceiling or does the act of multiplying by 2 compensate for the slower removal of zeros?

In fact, it can’t do so. The larger 2n becomes, the more zeros it will tend to contain. If 2n is large enough to contain 3 zeros on average, the deletion of zeros will overpower multiplication by 2 and the sequence will not rise any higher. Therefore the sequence that deletes every third zero will eventually repeat, although I haven’t been able to discover the relevant number.

But this reasoning applies to any rate, 1:z, of zero-deletion. If z = 100 and every hundredth zero is deleted, numbers in the sequence will rise to the point at which 2n contains sufficient zeros on average to counteract multiplication by 2. The sequence will have a ceiling and will eventually repeat. If z = 10^100 or z = 10^(10^100) and every googolth or googolplexth zero is deleted, the same is true. For any rate, 1:z, at which zeros are deleted, the sequence n = zerodelete(2n,z) has an upper limit and will eventually repeat.


Update (30×21)

Six years later, I’ve found the answer for z = 3. And uncovered a serious error in this article. See:

Power Trap

Will Two Power?

It’s such a simple thing: repeatedly doubling a number: 1, 2, 4, 8, 16, 32, 61, 128… And yet it yields such riches, reminiscent of DNA or a literary text:

2^0 = 1
2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 16
2^5 = 32
2^6 = 64
2^7 = 128
2^8 = 256
2^9 = 512
2^10 = 1024
2^20 = 1048576
2^30 = 1073741824
2^40 = 1099511627776
2^50 = 1125899906842624
2^60 = 1152921504606846976
2^70 = 1180591620717411303424
2^80 = 1208925819614629174706176
2^90 = 1237940039285380274899124224
2^100 = 1267650600228229401496703205376
2^200 = 1606938044258990275541962092341162602522202993782792835301376

Although, by Benford’s law*, 1 is the commonest leading digit, do all numbers eventually appear as the leading digits of some power of 2? I conjecture that they do. indeed, I conjecture that they do infinitely often. If the function first(n) returns the power of 2 whose leading digits are the same as the digits of n, then:

first(1) = 2^0 = 1
first(2) = 2^1 = 2
first(3) = 2^5 = 32
first(4) = 2^2 = 4
first(5) = 2^9 = 512
first(6) = 2^6 = 64
first(7) = 2^46 = 70368744177664
first(8) = 2^3 = 8
first(9) = 2^53 = 9007199254740992
first(10) = 2^10 = 1024

And I conjecture that this is true of all bases except bases that are powers of 2, like 2, 4, 8, 16 and so on. A related question is whether the leading digits of any 2^n are the same as the digits of n. Yes:

2^6 = 64
2^10 = 1024
2^1542 = 1.54259995… * 10^464
2^77075 = 7.70754024… * 10^23201
2^113939 = 1.13939932… * 10^34299
2^1122772 = 1.12277217… * 10^337988

That looks like a look of calculation, but there’s a simple way to cut it down: restrict the leading digits. Eventually they will lose accuracy, because the missing digits are generating carries. With four leading digits, this happens:

1: 0001
2: 0002
4: 0004
8: 0008
16: 0016
32: 0032
64: 0064
128: 0128
256: 0256
512: 0512
1024: 1024
2048: 2048
4096: 4096
8192: 8192
16384: 1638…
32768: 3276…
65536: 6552…

But working with only fifteen leading digits, you can find that 1122772 = the leading digits of 2^1122772, which has 337989 digits when calculated in full.


Previously pre-posted (please peruse):

Talcum Power


*Not Zipf’s law, as I originally said.